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SUMMARY
The architecture whereby activity across many brain regions integrates to encode individual appetitive social
behavior remains unknown. Here we measure electrical activity from eight brain regions as mice engage in a
social preference assay. We then use machine learning to discover a network that encodes the extent to
which individual mice engage another mouse. This network is organized by theta oscillations leading from
prelimbic cortex and amygdala that converge on the ventral tegmental area. Network activity is synchronized
with cellular firing, and frequency-specific activation of a circuit within this network increases social behavior.
Finally, the network generalizes, on a mouse-by-mouse basis, to encode individual differences in social
behavior in healthy animals but fails to encode individual behavior in a ‘high confidence’ genetic model of
autism. Thus, our findings reveal the architecture whereby the brain integrates distributed activity across
timescales to encode an appetitive brain state underlying individual differences in social behavior.
INTRODUCTION

Social behaviors play a critical role in survival. To appropriately

regulate social behavior, mammals must integrate external sen-

sory cues with internally generated brain states. Many mecha-

nisms whereby the brain processes external senses, such as

vision and audition, have been elucidated. Similarly, studies

have also uncovered multiple regions that contribute to complex

social behavior. For example, the anterior cingulate cortex (Cg)

signals empathy in humans (Morrison et al., 2004), the prefrontal

cortex regulates social hierarchy in rodents (Wang et al., 2011),

and the medial dorsal thalamus (MD) plays a critical role in social

appetitive behavior (Ferguson andGao, 2018). Circuit-level inter-
1728 Neuron 110, 1728–1741, May 18, 2022 ª 2022 Elsevier Inc.
actions between regions have also been shown to play a role in

regulating social behavior. Recent rodent studies have demon-

strated that ventral hippocampus (Hip)/prefrontal cortex cir-

cuits mediate social memory (Phillips et al., 2019), ventral

tegmental area (VTA)/nucleus accumbens (NAc) circuits

encode social reward (Gunaydin et al., 2014), and prefrontal cor-

tex/amygdala (AMY) circuits are critical for social avoidance

and socially aversive learning (Allsop et al., 2018; Kumar et al.,

2014; Schaich Borg et al., 2017). Nevertheless, the biological

processes whereby the brain synthesizes this otherwise distrib-

uted information to regulate how individual animals respond

under social appetitive conditions remain to be clarified. This

question is central to determining how individual animals
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organize themselves within broader social frameworks under

healthy conditions, and to revealing the potential mechanisms

whereby neural coding of social information is disrupted under

psychiatric disease states that broadly disrupt social function.

Human electroencephalographic (EEG) studies have described

the emergence of synchronized electrical oscillations between

cortical regionsat themilliseconds timescaleduringsocialpercep-

tion (Fraiman et al., 2014; Rodriguez et al., 1999), and functional

magnetic resonance imaging (fMRI) studies have revealed

synchronized neural activity across the brain at the seconds time-

scale (Sokolov et al., 2018). Together, this suggests that the brain

integrates neural activity across multiple brain regions and

timescales to encode appetitive states that drive individual

social behavior. Nevertheless, collecting spatially and temporally

resolved in vivo measurements of brain activity in humans, who

can provide self-reports of their social-emotional state, remains

a challenge.

Although brain states have classically been inferred in preclin-

ical models (i.e., rodents) using behavioral measurements in

isolation, rather than directly measuring the brain-wide activity

that underlies those states, several studies have linked physi-

ology with behavior. For example, a murine in vivo calcium imag-

ing study identified synchronous activity across multiple cortical

and limbic regions on the 100 ms–seconds timescale during

exposure to social novelty (Kim et al., 2016). Similarly, we have

previously observed synchronous electrical oscillations on the

10–100 ms timescale during aversive states in mice and rats

(Carlson et al., 2017; Hultman et al., 2018; Schaich Borg et al.,

2017). We have also found that these oscillations exhibit syn-

chronous activity with millisecond-timescale cellular firing in

the brain (Carlson et al., 2014; Hultman et al., 2016). Thus, we

hypothesized the existence of a network-level mechanism

involving the synchronization of oscillations that integrates

cellular firing across brain regions and timescales (milliseconds

to seconds) to corporately encode an appetitive brain state un-

derlying individual differences in social behavior.

To address these questions, we implanted C57BL/6J (C57)

mice in regions with well-established roles in social behavior,

including Cg, infralimbic (IL), and prelimbic (PL) cortex (the

anatomic subdivisions of the prefrontal cortex), AMY (basolateral

and central), NAc (core and shell), MD, Hip, and VTA (see Figure

S6). We then recorded electrical oscillations and cellular firing

across these regions, concurrently, as mice performed a social

exploration task. Using machine learning, we integrated electri-

cal activity across these regions and across the milliseconds to

seconds timescale into what we call an electrical functional con-

nectome (electome). By analogy to the connectome, the elec-

tome describes the detailed pattern of electrical interactions

across a group of brain areas. Moreover, by analogy to gene net-

works, electome networks describe a collection of brain circuits

within the electome that together encode distinct brain states.

Learning electome networks that comprise the total electome

is typically an unsupervised process, but we augmented a super-

vised approach to increase relevancy to complex social

behavior. After confirming that an appetitive social electome

network we discovered is synchronized with cellular firing and

generalizes to new animals on a mouse-by-mouse basis, we

also showed that causal frequency-specific manipulation of
network components modulates not only the electome but also

behavior. Moreover, we showed that the network is dysfunc-

tional in a genetic mousemodel of ASD. Thus, our findings reveal

a new mechanism whereby the brain integrates activity across

space and time to encode social behavior in health and disease.

RESULTS

Machine learning to discovering an appetitive social
behavioral state
To discover the network architecture underlying a putative appe-

titive social brain state, we performed multisite electrical record-

ings while mice of the C57 strain were subjected to a task

modeled after a classic social preference assay (Moy et al.,

2007). In this behavioral assay, mice freely explored a large arena

that was divided into two chambers: a small container housing a

novel age- and sex-matched mouse of another strain (C3H) was

situated in one chamber, and a second container holding a novel

object was situated in the other (Figure 1A). The location of the

experimental mouse was tracked throughout 10 min of explora-

tion; social preference was calculated based on the relative time

spent proximal to each container (Figure 1B). Importantly, by

repeating this assay across days with new social partner mice

and objects (Figure 1C), we collected nearly 100 min of electrical

recordings for each of our 28 implanted mice. Moreover,

because social behavior can vary from day to day, pooling

data across 10 sessions provided a more reliable assessment

of each individual animal’s innate social preference.

As expected, mice spent substantially more time interacting

with a social stimulus than an object across the recording ses-

sions (main effect of stimulus F1, 594.8 = 349.1, p < 0.0001 using

a three-way repeated measures ANOVA of unequal variance

comparing stimulus, sex, and session; therewere no other signif-

icant main effects or interactions; n = 19 male mice; n = 9 female

mice, see also Figure 1C). Finally, because there were no main

effects of sessions or sex, we pooled data across sessions,

and we included both male and female mice in the group of an-

imals utilized to discover the network structure within the neu-

ral data.

We used discriminative cross spectral factor analysis non-

negative matrix factorization (dCSFA-NMF) to discover the

network structure within this neural data (Talbot et al., 2020).

dCSFA-NMF is a supervised machine learning approach that

we designed to be both descriptive (i.e., discovers brain activity

measures that are integrated across seconds of time) and pre-

dictive (i.e., discovers networked patterns of brain activity that

encode external behavioral variables) (Vu et al., 2018). Impor-

tantly, dCSFA-NMF is based on widely accepted measures of

brain activity, such that the resultant electome networks are

interpretable (Vu et al., 2018). Specifically, each learned elec-

tome network integrates local field potential (LFP) power (mea-

surement of oscillatory amplitudes across frequencies resolved

from 1 to 56 Hz; neural correlate of cellular population activity

and synaptic activity within brain regions), LFP synchrony (quan-

tification of how two LFPs correlate across frequencies resolved

from 1 to 56 Hz over a millisecond timescale; neural correlate of

brain circuit function between brain regions), and LFP Granger

synchrony (statistical forecasting based on Granger causality
Neuron 110, 1728–1741, May 18, 2022 1729
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Figure 1. Approach to decode social-appetitive behavior

(A) Schematic of the two-chamber social assay and (B) automated scoring approach used to quantify social and object interaction.

(C) Mice exhibit stable interaction times across repeated sessions at the population level (n = 36 mice). Data are shown as mean ± s.e.m.

(D) Schematic of machine learning model used to discover social-emotional brain state.

(E) Coding features that conceptually underlie a social-emotional brain state.
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testing; neural correlate of information transfer within a circuit).

Finally, our dCSFA-NMF model yields an activity score for

each electome network, which indicates the strength at which

that network is represented during each one-second segment

of LFP. A given brain area or circuit can belong to multiple elec-

tome networks, providing the opportunity for distinct electome

networks to functionally interact to yield a global emotional brain

state (Hultman et al., 2018). Thus, dCSFA-NMF integrates

spatially distributed neural activity across milliseconds to sec-

onds of time in a manner that both models naturally occurring

brain networks and predicts external behavioral conditions

widely shown to induce and/or reflect emotional states in mice

(see Figure 1D, for dCSFA-NMF schematic).

Our goal was to discover a network that encoded individual

differences in sociability. Thus, we reasoned that this network

should perform three computations: (1) the network should

encode whether an animal was socially engaged, (2) the network

should encode appetitive information, and (3) the network should

integrate the first and second computations to encode individual

behavioral outcomes in a social appetitive task. To achieve the

first two criteria, we trained amodel to discriminate social versus

object interactions using the data recorded during the appetitive

social preference task. Here, we reasoned that the social interac-

tions during the social preference assay were social in nature

and that they were more appetitive than object interactions. To

meet the third criteria, we weighted each mouse in our model

relative to their individual social preference, biasing our model

toward fitting the mice with the strongest social preference (Fig-
1730 Neuron 110, 1728–1741, May 18, 2022
ure 1E). As such, we set out to identify a network that encoded

and integrated social and appetitive information in a manner

that regulates individual behavioral outcomes.

Modeling our data with six electome networks optimally

balanced complexity (i.e., explaining more variance) with parsi-

mony (i.e., choosing fewer networks to represent the brain; see

Figure S1C). As expected, the supervised electome network

showed the highest predictive performance (electome network

#1, hereafter referred to as Social-ElectomeNetwork; EN-Social;

Figure 2A). We then probed the activity of EN-Social across all

the time points while mice explored the two-chamber assay.

Although our initial learning model only used data widows

labeled as social and object classes, we found that EN-Social

activity exhibited dynamics that reflected behaviorally relevant

task variables. Specifically, we found that EN-Social activity

increased at the onset of social interactions and sloped down-

ward as epochs of social interactions concluded. We also found

that EN-Social activity decreased during object interactions (Fig-

ure 2B). Critically, the discriminatory strength of EN-Social was

directly correlated with social preference across our population

of mice (p = 0.002, Rho = 0.56 using Spearman’s rank correla-

tion; see Figure 2C), suggesting that our weighting strategy suc-

cessfully biased dCSFA-NMF to learn a network that integrated

social and appetitive information to drive individual behavior.

Network dynamics reflect brain-wide cellular activity
We next verified that this putative socially relevant electome

network was a bona fide representation of biological activity
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Figure 2. An electome network encodes a social-appetitive brain state

(A) Machine learning was used to discover six networks composed of multi-regional LFP activity (n = 28 mice; AMY, Cg, IL, PrL, NAc, Hip, MD, and VTA).

The supervised electome network (blue; EN-Social) showed the strongest classification of social versus object interactions. Data are shown as mean ± s.e.m.

(B) EN-Social event-related activity. Blue highlights identify time windows subjected to supervision by class (social versus object). Data are shown as

mean ± 95% CI.

(C) Decoding accuracy of EN-Social activity within animal versus social preference (p = 0.002 using Spearman’s correlation).
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and not simply an abstract mathematical construct (Hultman

et al., 2018). To achieve this, we determined whether EN-Social

activity demonstrated a relationship with the activity of cells re-

corded simultaneously from the implanted brain regions, which

is an undisputed reflection of biological function. Since we found

that cellular firing was broadly related to social versus object

interactions in the two-chamber assay (112/326 cells, see Fig-

ure 3A), we used a permutation test to rigorously test our find-

ings. Here, we found that EN-Social exhibited a relationship to

the activity of �18% of the cells we recorded (Figures 3B and

3C), much higher than would be expected by chance. Thus,

we confirmed that EN-Social reflects a network-level neural pro-

cess that emerges from cellular firing across the brain (Carlson

et al., 2014; Hultman et al., 2018).

Individual brain network components fail to
independently encode individual behavior
After finding that EN-Social reflects an appetitive social brain

state in the group of mice used to train our model, we explored

the extent to which the activity within the nodes and circuits

that composed EN-Social independently encoded social

behavior. EN-Socialmapped to LFP theta (4–11 Hz) power within

all the implanted regions. Additionally, EN-Social comprised

prominent theta synchrony across all the implanted brain regions

except Hip (Figure 4A, see blue highlights). The network also

mapped to oscillatory activity in two higher frequency bands:

30–40 Hz and 50–56 Hz. The 30–40-Hz oscillations showed local

activity in Hip and MD, as well as synchrony between all the im-

planted brain regions except Hip (Figure 4A, see green high-

lights). The higher frequency gamma band (50–56 Hz) showed

local activity within all the brain regions we measured except

AMY and Cg and synchrony between all the implanted brain re-

gions except Hip (Figure 4A, see red highlights). Prominent circuit

directionality, which is quantified as the difference in the Granger

synchrony between each pair of brain regions (i.e., area A/B

versus area B/A), was observed only in the theta frequency

range (Figures 4B and 4C). This activity emerged from PL, IL,

and AMY, relayed through Cg and NAc to MD, and converged

in VTA (see Figure S2). Thus, EN-Social emerged from brain re-

gionspreviously shown to play aprominent role in social behavior

and converged on a brain region critical for reward regulation.
We then explored the extent to which the constituent circuit el-

ements of EN-Social encoded social behavior. Specifically, we

quantified the extent to which activity in several prominent

network nodes/circuit elements (4–11 Hz power and coherence

measures) encoded social versus object interactions. While

many of these circuit elements contained social information,

none of them encoded social engagement as strongly as EN-So-

cial (Figure 4D). In fact, some of the circuit elements showed

higher activity during object interactions (i.e., MD). Strikingly,

when we compared encoding in each of these network nodes/

circuit elements with social preference across the training set

of mice, we failed to discover any significant relationships (Fig-

ure 4E). Thus, while many previously identified circuits contained

information regarding ongoing social encounters, individual

behavior was only successfully encoded at the network level.

EN-Social generalizes across mice to encode social
context and valence
We next set out to establish EN-Social as a true measure of an

appetitive social brain state by testing the generalizability of

this network, a gold-standard machine-learning validation strat-

egy (Vu et al., 2018). Specifically, rather than simply testing

whether EN-Social encoded object versus social interactions in

the same group of animals performing additional sessions of

the two-chamber behavioral assay, we tested whether the elec-

tome network we learned in the initial group of mice generalized

to a new cohort of C57 mice performing a different behavioral

assay that also quantifies social behavior (Figure 5A). Likewise,

we also examined EN-Social activity in two orthogonal behav-

ioral tasks to test whether this network was indeed encoding a

brain state relevant to the valence of external stimuli. To empha-

size, the machine learning electomemodel was completely blind

to these tasks and data, so this represents a test of its general-

izability. Thus, we tested (1) whether our network encoded social

engagement, (2) whether the network encoded appetitive states,

and (3) whether the network effectively integrated social and

appetitive information to regulate behavior.

First, we acquired neural activity in eight mice exposed to our

free object/social interaction test (FOSIT; Figure 5B). In this

assay, the C57 subject mice are repeatedly exposed to a novel

object or a novel conspecific (age- and sex-matched) stimulus
Neuron 110, 1728–1741, May 18, 2022 1731
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Figure 3. Social-appetitive electome network maps to cellular activity

(A) Cellular firing preference for object versus social interactions during two-chamber assay (cellular activity analyzed from session #5). Significant differences

were observed between the two conditions for 112/326 cells (p < 0.05 using rank-sum test).

(B) Representative example of cell that showed activity correlated with EN-Social. Horizontal red and green lines signify object and social interactions,

respectively.

(C) Cellular firing versus EN-Social activity across the multi-regional population of cells (p < 0.05 using permutation test; recorded from session #5 of two-

chamber assay).
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mouse during a single recording session. Encounters in FOSIT

occur in the absence of subchambers used for the two-chamber

assay, such that the stimulus partnermouse can initiate social in-

teractions with the implanted experimental mouse. When we

projected neural data obtained during FOSIT into our initial elec-

tome model, we found that EN-Social activity was higher in

reciprocal social interactions than it was in the object condition

(c2
3,39 = 20.52 and p = 1.3310�4 using Freidman’s test;

p = 0.002 using post hoc two-tailed sign-rank test with false

discover rate correction; n = 10 new mice). EN-Social activity

was also higher during nonreciprocated social interactions initi-

ated by the stimulus partner mouse than when the two mice

were not interacting (p < 0.02 using two-tailed sign-rank test).

Finally, EN-Social activity was the highest when the experimental

mouse was engaged in social interactions (p = 0.03 using two-

tailed sign-rank test). Together, our findings verified that EN-

Social generalized to encode social information in new mice

performing a different appetitive social task.

Having established that EN-Social contained social informa-

tion, we next tested whether EN-Social encoded the valence of

stimuli (rather than solely encoding sensory information or the

salience of cues) by testing whether the network signaled

valence in other orthogonal behavioral tasks. First, we sub-

jected a new cohort of C57 mice to an intermittent sucrose ac-

cess test designed to model an appetitive state associated with

a food reward. Here, implanted mice were individually housed

in an arena fitted with two nose poke holes. A syringe placed

in the back of each hole dispensed 10-mL water in response

to a nose poke. After several days of habituation, water vials

were replaced with 2% sucrose for 1.5 h during the dark cycle.

Neural recordings were acquired during intermittent access to

sucrose and the subsequent water consumption period and

then projected into our initial electome model. EN-Social activ-

ity was higher following nose pokes for sucrose than for water

(Figure 5C; p = 0.016 using sign-rank test; n = 7 new mice), and

EN-Social encoded the sucrose versus water conditions to the
1732 Neuron 110, 1728–1741, May 18, 2022
same extent that it encoded the social versus object conditions

in the FOSIT (U = 129; p = 0.48 using rank-sum test; AUC =

0.59 ± 0.02 and 0.61 ± 0.02, for EN-Social in the sucrose versus

water condition and the social versus object condition in the

FOSIT). Thus, activity in EN-Social encoded reward in a behav-

ioral context that was unrelated to social behavior.

Second, we probed whether EN-Social activity encoded the

location of mice on a classic elevated plus maze assay used

to model avoidance behaviors. In this assay, mice are placed

on a large plus-shaped platform that is elevated off the floor

(Figure 5D). Two of the arms of the maze are walled, and the

other two are open. The time that the mice spend in the open

arms of the maze is increased by myriad anxiolytic manipula-

tions and decreased by anxiogenic manipulations (Krishnan

et al., 2007; Marcinkiewcz et al., 2016; Rodgers et al., 1992).

Furthermore, several anxiety-related neural signatures are

observed as animals explore the open arms of the maze (Fe-

lix-Ortiz et al., 2016; Padilla-Coreano et al., 2016; Padilla-Cor-

eano et al., 2019; Seidenbecher et al., 2003); thus, the open

arms of this assay are widely accepted as an environmental

context that induces an aversive anxiety-like state in C57

mice. When we projected neural data acquired from C57

mice subjected to the elevated plus maze into our electome

model, we found that EN-Social encoded the open versus

closed arm location of mice [c2
2,56 = 14 and p < 0.001 using

Freidman’s test; p = 0.006 using two-tailed sign-rank test;

n = 19 mice (12 mice from the initial EN-Social training set in

a new, untrained-on behavioral condition and seven new

mice); Figure 5D]. Strikingly, EN-Social activity was lower in

the open arm than the closed arm (AUC = 0.42 ± 0.02 for

open arm versus closed arm, with an AUC below 0.5 signifying

a negative relationship but the same strength as an AUC=0.58

relationship; p = 0.004 using two-tailed sign-rank test). More-

over, EN-Social activity was higher while mice were in their

home cage (prior to the assay) than when they were in the

open arm of the assay (p = 0.049 using two-tailed sign-rank
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Figure 4. Circuit elements within EN-Social fail to encode individual behavior

(A) Power and synchrony measures that compose EN-Social. Brain areas and oscillatory frequency bands ranging from 1–56 Hz are shown around the rim of the

circle plot. Spectral power measures that contribute to the electome network are depicted by the highlights around the rim, and cross spectral (i.e., synchrony)

measures are depicted by the lines connecting the brain regions through the center of the circle (electome activity is shown at a relative spectral density threshold

of 0.33, signifying the 85th percentile of retained features).

(B) Granger offset measures were used to quantify directionality within the electome network. Prominent directionality was observed across the theta (4–11Hz)

frequency band (shown at a spectral density threshold of 0.33). Histograms quantify the number of lead and lagging circuit interactions for each brain region.

(C) Schematic of signal directionality within EN-Social.

(D) Decoding accuracy of EN-Social circuit elements for social versus object interactions. Data are shown as mean ± s.e.m.

(E) Decoding accuracy of EN-Social circuit element activity within animal versus social preference using Spearman’s correlation. Threshold corresponds with

p < 0.05.
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test). These results demonstrated that the network did not sim-

ply encode a brain state that is related to an animal’s arousal or

the salience of sensory cues. Rather, since the strength of EN-

Social encoding was the same for the FOSIT and elevated plus

maze test assays (U = 275; p = 0.24 for comparisons of |AUC-

0.5| for the two tasks using a rank-sum test), our findings

showed that EN-Social encoded a state related to the valence

of external stimuli. Thus, EN-Social encoded social, appetitive,

and aversive information in a manner that generalized across

mice, raising the question as to whether activity in EN-Social

was selective.

EN-Social fails to encode individual responses to non-
social stimuli or social aversion
To probe whether EN-Social showed selectivity in its encoding,

we first tested whether EN-Social encoded individual differences

in the sucrose-drinking (non-social appetitive) and elevated plus

maze (non-social aversive task) assays. When we explored the

sucrose versus water condition, we found that EN-Social decod-

ing failed to correlate with the sucrose preference of individual

mice (p = 0.43 using Spearman’s rank correlation, Figure 6A,

left). In fact, the mice that showed the highest sucrose prefer-

ence tended to show the least network discrimination of sucrose
versus water. Similarly, EN-Social decoding of elevated plus

maze location failed to correlate with the closed arm preference

of individual mice (p = 0.96 using Spearman’s rank correlation,

Figure 6A, right). Thus, EN-Social activity did not regulate individ-

ual behavioral outcomes in the sucrose-drinking or elevated plus

maze assays as it had in the social preference assay.

Next, we tested whether EN-Social preferentially encoded so-

cial information or the valence of external stimuli. We reasoned

that a social stimulus would be expected to increase EN-Social

activity, while an aversive stimulus would be expected to

decrease network activity. Thus, exposure to a socially aversive

stimulus would allow us to determine whether the network

showed encoding preferences. For this experiment, we ex-

ploited the widely validated chronic social defeat paradigm (Ber-

ton et al., 2006). Thirty-four implanted male mice were subjected

to chronic social defeat stress (Figure 6B) in which C57 mice

were exposed to 10 consecutive days of subordination stress

from a larger, more aggressive CD1 mouse. We then recorded

5 min of neural activity while these mice were in a small holding

chamber. An aggressive CD1 mouse was then placed immedi-

ately outside the holding chamber, and we recorded five addi-

tional minutes of neural activity (Figure 6C, top). Critically, during

the latter period, the CD1 mice engaged in behaviors that were
Neuron 110, 1728–1741, May 18, 2022 1733
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Figure 5. Electome network generalizes to

encode social brain state and valence

(A) Strategy for validating EN-Social.

(B) Activity in the EN-Social network increased

during distinct social-appetitive brain states

(n = 10 new mice; p < 0.05 using Friedman’s test,

and post hoc testing using sign-rank test with

false discover rate correction). The position of the

subject mouse is shown relative to an object or

another experimental mouse on the bottom.

(C) EN-Social activity during water versus sucrose

consumption (left) and decoding accuracy versus

nose poke onset (right; n = 7 new mice). p < 0.05

using sign-rank test.

(D) EN-Social activity during home cage and

elevated plus maze recordings (n = 19 mice, 7

of which were new to the study). p < 0.05

using Freidman’s test, followed by two-tailed

sign-rank test.
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presumably aversive to the C57 mice, including biting them

through the holding chamber openings. The following day, im-

planted C57micewere subjected to a classic single chamber so-

cial preference test during which they could freely explore an

arena that contained a CD1 mouse housed in a small chamber

(Figure 6C, bottom). Whereas control animals typically prefer

spending time in the zone proximal to the CD1 mouse following

chronic social defeat stress,�60%of C57mice show behavioral

avoidance (i.e., spend less time exploring) of the CD1 mouse

(Berton et al., 2006)

We identified 21 implantedmice (62%) that showed avoidance

to the CD1 mouse and used these for our subsequent analysis.

Thus, for this subset of mice, exposure to the CD1 was an aver-

sive social experience. When we quantified network activity for

these mice when they were in the small holding camber, we

found that EN-Social exhibited strong activation to the aversive

social stimulus (p < 6310�6 using a two-tailed sign-rank test;
1734 Neuron 110, 1728–1741, May 18, 2022
AUC = 0.72 ± 0.02, Figure 6D). This

showed that the network preferentially

encoded social information (which we

previously determined increased

network activity) rather than negatively

valanced stimuli (which we previously

found decreased network activity).

Finally, we tested whether EN-Social

also encoded individual behavioral out-

comes in response to socially aversive in-

formation. When we compared individual

network encoding during the socially

aversive neurophysiological assay with

behavioral outcomes measured during

subsequent behavioral testing, we found

no relationship between these two vari-

ables (p = 1 using Spearman’s rank cor-

relation, Figure 6D). Thus, EN-Social did

not regulate differences in individual

behavior under socially aversive condi-

tions. Taken together, these findings
showed that EN-Social selectively integrates social and appeti-

tive information to encode individual behavioral outcomes.

Causal manipulation of EN-Social circuit impacts
network activity and behavior
After demonstrating that EN-Social encoded a social-appetitive

brain state,we tested the impact of selectivemanipulation of neu-

ral activity within a key node of the network during concurrent

neurophysiological recordings and behavioral assessments.

We targeted the PL/NAc element, a component of EN-Social

(4–11Hz, see Figures 4A–4C), because aprior causal optogenetic

study had implicated this circuit in appetitive social behavior

(Murugan et al., 2017). We implantedmice (n = 10) with recording

electrodes and bilateral stimulating fibers in NAc following infec-

tion with channel rhodopsin-2 (AAV5-CamKII-Chr2, Figure 7A) in

PL, bilaterally. Animals were then subjected to our FOSIT assay

during stimulations with blue light (473 nm) to activate Chr2, or
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Figure 6. EN-Social fails to encode individual

responses to non-social stimuli or social

aversion

(A) EN-Social decoding for sucrose/water versus

the sucrose preference of individual mice (left). EN-

Social decoding for open arm/closed arm versus

the open arm avoidance (i.e., closed and center

arm preference) of individual mice (right). p > 0.05

using Spearman’s correlation for both compari-

sons.

(B) Timeline for chronic social defeat stress

experiment.

(C) Protocol utilized to induce and assess neural

activity (top) and behavior (bottom) during socially

aversive conditions.

(D) Decoding accuracy of CD1 versus empty area

compared with social avoidance of CD1 mice in

susceptible animals. p > 0.05 using Spearman’s

correlation.
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yellow light (589 nm) as a negative control (10 Hz, 1 mW bilater-

ally, 5ms pulse width; Figure 7B). Critically, we confirmed activa-

tion of the PL cortex/nucleus accumbens terminals in all of the

experimental animals (Figure 7C, left), andwe excludedmice that

exhibited pronounced local oscillatory responses to blue light

stimulation across all of the implanted brain regions (Figure 7C,

right; n = 2), given our prior observations that supraphysiological

optogenetic stimulation can suppress network-level activity

(Hultman et al., 2018).

Causal activation of PL/NAc at 10 Hz enhanced EN-Social

activity and increased social behavior. Specifically, we projected

LFPdata into our initial electomemodel and quantified EN-Social

activity during periods of social interaction (Figure 7D). We found

that blue light stimulation enhanced EN-Social activity compared

with yellow light stimulation (p = 0.016 using sign-rank test; n = 7

mice; Figure 7E). Next, we compared the amount of time mice

spent socially interacting during periods of blue and yellow light

stimulation. We found that blue light stimulation increased social

interaction time in the FOSIT (F1,13 = 5.76; p = 0.03 for stimulation

effect using two-way RMANOVA; Figure 7F, left). No differences

in object interaction time were observed for the two light stimula-

tion conditions (F1,13 = 1.67; p = 0.22 for stimulation effect using

two-wayRMANOVA; Figure 7F, right). Interestingly, we observed

lower social interaction and network activity in response to stim-

ulation of PL/NAc at 20Hz (1 mW bilaterally, see Figure S3).

Thus, our findings showed that activation of PL/NAc at the

endogenous frequency of the network enhanced both EN-Social
N

activity and increased social interaction.

Causal activation of a different circuit

element that was not strongly represented

in EN-Social neither increased EN-Social

activity (PrL/AMY, 10 Hz, 1 mW bilater-

ally; n = 7 mice; p = 0.94 using one-tailed

sign-rank test, seeFigureS4) nor did it alter

social or object interaction time (F1,22 =

0.23, p = 0.63; F1,20 = 0.80, p = 0.38; for

stimulation effect on social and object

interaction, respectively, using a two-way
RMANOVA; n = 11 mice, see Figure S4). Taken together with

our other validation experiments, these results provided broad

evidence that EN-Socialwas causally related to appetitive social

behavior.

After establishing EN-Social as a generalized and putatively

causal appetitive social-emotional brain state under healthy con-

ditions, we wondered whether any aspects of EN-Social would

be altered in a psychiatric disease state associated with social

deficits. Autism spectrum disorder (ASD) is a pervasive neurode-

velopmental disorder for which social deficits are a core feature.

They include deficits in social attention and engagement and

deficient processing of social information (Crawford et al.,

2016; Dawson et al., 2012; Dawson et al., 2004; Klin et al.,

2015). Genetic manipulations are implicated in �52% of ASD

cases (Gaugler et al., 2014), and one such high confidence

gene is ANK2 that codes the Ankyrin-B protein (SFARI-GENE,

2020; Yang et al., 2019). Importantly, unlike many other genes

that are implicated in syndromic ASD, ANK2 mutations yield so-

cial deficits without impacting executive cognitive dysfunction.

We previously developed an Ank2 mouse model based on a

gene mutation identified in a patient with ASD. Heterozygous

mice show decreased social behavior on multiple assays,

decreased juvenile vocalizations, and increased cognitive flexi-

bility (Yang et al., 2019).

We implanted adult Ank2 male mice and their wild-type litter-

mate controls with recording electrodes and subjected them to

10 sessions of neural recordings in the two-chamber social
euron 110, 1728–1741, May 18, 2022 1735
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Figure 7. Causal activation of the prefrontal cortex to nucleus accumbens circuit element enhances EN-Social activity

(A) Strategy used to activate PL terminals in NAc.

(B) Experimental paradigm for FOSIT.

(C) Power spectral plots showing increased 10 Hz oscillatory activity during blue light stimulation. Plots show representative spectral patterns from a mouse

during blue (left) and yellow (middle) light stimulation trials included in analysis. Representative plots from mouse that showed increased 10 Hz activity across all

brain regions during blue light stimulation (right).

(D) Strategy used for EN-Social validation.

(E) EN-Social activity during blue light stimulation. Network activity was pooled across periods of social interaction by the subject mice and compared between

the blue and yellow light stimulation periods. p < 0.05 using sign-rank test

(F) Social (left; p < 0.05) and object interaction time (right; p > 0.05) during blue and yellow light stimulation (all technical replicates are shown). *p < 0.05 using two-

way repeated measures analysis of variance.
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assay (Figures 8A and 8B). Ank2 mice exhibited normal social

preference (U = 64; p = 0.86 using rank-sum test; Figure 6C)

and did not show seizure activity (Figures 8D and 8E). When

we projected their LFP activity into our initial electome model,

Ank2mice and their littermate controls both exhibited EN-Social

activity that was higher during social versus object encounters

(F1,16 = 30.5; p = 4.7310-5 for social versus object effect using

a mixed-model ANOVA; n = 11 and 7, for wild-type and Ank2

mice, respectively; Figure 8F). Furthermore, no differences in

EN-Social activity were observed across genotype (F1,6 = 0.58;

p = 0.46 for genotype effect; F1,16 = 1.04; p = 0.32 for interaction

effect), demonstrating that EN-Social continued to encode so-

cially relevant information in the mutants.

The discriminatory strength of EN-Social was directly corre-

lated with social preference on a mouse-by-mouse basis

across the group of wild-type littermate control mice (F1,14 =

10.1; p = 0.007 for interaction effect using analysis of covariance;

p = 0.004 and Rho = 0.81 for wild-type mice using Spearman’s

rank coorelation; see Figure 8G), demonstrating that the socially

appetitive brain state that we discovered in our original group of
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training animals generalized to new mice. Strikingly, EN-Social

activity was not correlated with social preference in the Ank2

mutants (p = 0.14 for Ank2 mutants using Spearman’s rank cor-

relation; see Figure 8H). To probe whether this network-level

dysfunction reflected a failure of EN-Social to encode appetitive

information, or a select failure to integrate social and appetitive

information, we subjected normal and mutant mice to a su-

crose-drinking assay. When we compared EN-Social activity in

response with sucrose consumption, we observed similar activ-

ity between normal and mutant mice (U = 64; p = 0.48 using

rank-sum test). Thus, only the EN-Social integration code was

disrupted by Ank2 dysfunction, such that network activation

failed to regulate individual behavior. Altogether, these results

confirmed that EN-Social was altered in a disease state associ-

ated with social deficits.

DISCUSSION

Themanner whereby cells, which are segregated acrossmultiple

brain regions, integrate their activity over time to generate social
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Figure 8. Electome network fails to encode

individual social preference in a genetic

model of autism spectrum disorder

(A and B) Ank2 mice and their littermate controls

were subjected to two-chamber social assay.

(C) Both groups showed preference for social in-

teractions (p > 0.05).

(D and E) Representative LFP activity in (D) wild-

type and (E)Ank2mice showing no seizure activity.

(F) EN-Social activity during social and object in-

teractions (p < 0.05 for conditions; p > 0.05 for

genotype effects using mixed effect model anal-

ysis of variance with Box-Cox transformation).

(G and H) EN-Social activity versus Appetitive so-

cial behavior in (G) wild-type mice (p < 0.05 using

Spearman’s rank) and (H) Ank2mutants (p > 0.05).

(I) Network activity during sucrose consumption in

wild-type mice and Ank2 mutants (p > 0.05 using

rank-sum test).

(J) Summary of EN-Social function in Ank2

mutants.
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brain states remains an unaddressed question. Human studies

have sought to discover this network-level mechanism by prob-

ing changes in brain-wide hemodynamic responses using fMRI

and/or fast electrical activity across the scalp using EEG. These

studies have revealed multiple brain regions and several fast

neural oscillatory features that putatively contribute to social

processing (Fraiman et al., 2014; Rodriguez et al., 1999; Sokolov

et al., 2018). Nevertheless, fMRI is limited in its ability to resolve

neural activity at the timescale of cellular activity in the brain (i.e.,

milliseconds); EEG does not quantify neural activity deep within

the brain and causality testing via direct manipulation of the hu-
N

man brain remains a challenge. Preclini-

cal animal studies, in contrast, readily

facilitate causality testing of genetic and

cellular/molecular mechanisms; however,

approaches that monitor electrical activ-

ity across multiple regions have yet to

be broadly applied to the study of appeti-

tive social behavior. Given these limita-

tions, network models that describe the

causal mechanism whereby fast neural

activity throughout the depth of the brain

integrates across space and time to

encode social-appetitive behavior remain

elusive.

Here, we implanted recording wires into

eight cortical and limbic brain regions

located through the depth of the brain, al-

lowing us to record millisecond-timescale

electrical fluctuations as mice engaged in

behaviors used to model appetitive and

aversive social brain states. Our neural re-

cordings yielded 5,152 features that quan-

tified fast timescale (i.e., milliseconds to

hundreds of milliseconds) region-specific

activity and between-region circuit activity

each second. Importantly, the behaviors

we sought to model were multimodal as
social processing indubitably exploits visual, tactile, olfactory,

and auditory information and regulates the motor output. As

such,weanticipated that animalswould exhibit neural activity pro-

files in ‘non-social’ brain regions (e.g., motor cortex) that were

different during encounters with another mouse than during an

encounter with an object. Thus, we did not have a principled strat-

egy for selecting additional ‘negative control regions’ to include in

our dataset; rather, we allowed circuit elements that did not differ

between social and non-social encounters (as represented by a

specific brain area pairs and frequencies) within our dataset to

function as the putative negative controls.
euron 110, 1728–1741, May 18, 2022 1737
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Using machine learning, we discovered the biophysiological

patterns whereby these features integrated across seconds of

time to encode a socially appetitive brain state. Not all circuits

were captured by this network, providing evidence that our

network was indeed selective for specific network elements.

Not only did we discover that activity in the resulting electome

network encoded the onset and termination of social interaction

epochs (Figure 1E), but we also confirmed that the activation

strength of EN-Social was correlated with the social preference

of individual mice (Figure 1F). Both these properties generalized

to new groups of mice that were not used to discover the initial

network on a mouse-by-mouse basis (see Figures 8G and S5),

and the network generalized across sex (Block et al., 2020).

Strikingly, we found that EN-Social generalized to encode active

and passive social engagement in a different task that allows two

freely behaving mice to interact with each other (i.e., FOSIT),

confirming its validity. EN-Social also encoded food reward.

This network exhibited some spectral overlap (based on brain re-

gions, frequencies, and directionality composition) with another

electome network that we recently found to signal goal progress

(Vu et al., 2019), suggesting that the EN-Social may exploit gen-

eral brain circuits that encode reward. EN-Social also negatively

encoded a brain state related to open arm avoidance on the

elevated plus maze, demonstrating that the network signaled

the valence of external stimuli.

To determine whether we could disentangle the social (posi-

tive) and valence (positive and negative) coding aspects of

EN-Social, we tested mice in a socially aversive context. By ex-

ploiting the chronic social defeat paradigm, we found that the

susceptible mice (which exhibit social avoidance) exhibit EN-So-

cial activation during an aversive exposure to an aggressor

mouse. Thus, EN-Social was more biased to encoding social in-

formation than valence information. Most importantly, EN-Social

failed to encode individual behavior in the non-social appetitive

(sucrose drinking), non-social aversive (elevated plus maze),

and social-aversive conditions we tested. Thus, EN-Social

selectively encoded individual differences in socially appetitive

conditions, suggesting that the network integrates socially rele-

vant informationwith appetitive circuits to drive individual behav-

ioral outcomes.

When we tested many of the circuit elements that composed

EN-Social independently, we found that most contained social

information (AUC significantly higher or lower than 0.5). This ex-

pected finding enabled us to benchmark our findings against

myriad studies establishing the role of these circumscribed cir-

cuits in social behavior. None of the circuit elements we tested

encoded social behavior as strongly as EN-Social, demon-

strating that EN-Social activity better explained social behavior

than the previously established circuit elements (many of which

have been the subject of causal manipulations). Even more strik-

ing, none of the circuit elements encoded individual difference in

behavior. Thus, while these established circuit elements may

indeed contain socially relevant information, they must be inte-

grated together to determine individual social behavior.

Activity in the electome network correlated with cellular firing

throughout the brain, confirming its biological significance. The

network was composed of theta oscillations (4–11 Hz) that syn-

chronized across most of the regions we measured, showing
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directionality that emerged fromAMY, PL, and IL relayed through

Cg and NAc to MD, and converged in VTA. Critically, direction-

ality by no means implies that information flow is unidirectional

(i.e., Granger A/B exceeding Granger B/A does not denote

Granger A/B but not Granger B/A), nor does directional

Granger coherence preclude other regions serving as anatomic

relays (i.e., Granger A/B does not exclude Granger A/Z/

B). Nevertheless, it is notable that the activity pattern that we

discovered in EN-Social mirrored findings from other causal

studies aimed at dissecting the individual anatomical circuits

that contribute to social behavior. For example, while hyperacti-

vation of PL projection neurons disrupts social preference (Yiz-

har et al., 2011), projection-specific studies revealed that PL/

NAc, but not the PL/AMY or PL/VTA circuits, mediates this

effect (Murugan et al., 2017). This aligns with the directionality

in EN-Social that exhibits activity in the PL/NAc, but not the

PL/AMY or PL/VTA circuits. Moreover, we confirmed that

causal stimulation of PL/AMY failed to increase EN-Social or

social behavior.

In contrast to these previous findings, here we found that stim-

ulation of PL/NAc induced, rather than suppressed, social

behavior, at least with stimulation at the 10-Hz frequency. Our re-

sults comparing the network activity and behavioral outcomes

induced by different stimulation frequencies suggest that this dif-

ference may in part be due to the higher stimulation frequency

utilized in the prior work (Figure S3), or other contributing factors

such as the context in which social encounters occurred (novel

area versus habituated arena), or difference in experimental

design (within-subjects versus across-subjects) (Murugan

et al., 2017). Notably, several of these prior behavioral outcomes

were observed using a 20-Hz stimulation, which was not found

as a component circuit of EN-Social, potentially explaining why

stimulating this pathway at 10 Hz enhanced EN-Social activity

and promoted social behavior. Critically, together these findings

also highlight an important role for using electome networks to

interpret behavioral outcomes from causal manipulation studies,

since causally activating a circuit at a frequency that does not

match endogenous circuit activity may function to suppress

behaviorally relevant network activity.

Prior work has also implicated Cg/AMY in mediating aver-

sive social-emotional states (Allsop et al., 2018). While one of

our early electome models learned in a socially aversive context

identified this same circuit pathway (Schaich Borg et al., 2017),

Cg/AMYwas not prominently featured in our current appetitive

social electome network. Thus, the network we discovered here

clarifies how distinct circuits integrate in a normal physiological

context to encode an appetitive social-emotional brain state.

Future analysis using adversarial machine learning models may

clarify whether and/or disambiguate which specific aspects of

EN-Social uniquely signal appetitive social behavior rather than

generally signal all social or appetitive brain states.

Finally, we also employed an Ank2-based mouse model of

ASD as a naturalistic strategy to causally manipulate EN-Social.

Importantly, despite exhibiting social deficits across several

behavioral assays, we previously found that Ank2 mice demon-

strate normal social preference in the two-chamber assay. Thus,

we anticipated that this assay would enable us to probe EN-So-

cial using the Ank2 mice under conditions where they showed
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similar behavioral outputs as their wild-type littermates. Like our

causal behavioral (e.g., elevated plus maze open arm) and opto-

genetic manipulations in healthy mice, alteration of Ank2 func-

tion also disrupted EN-Social function. EN-Social continued to

encode the difference between social and object interactions

in the Ank2 mutants, consistent with our clinical observations

that most individuals with high functioning autism can discrimi-

nate other individuals from objects. The network also showed

similar activity between mutants and healthy controls during an

appetitive sucrose consumption task. Nevertheless, EN-Social

failed to encode individual differences in social preference in

the mutants. Thus, Ank2 dysfunction selectively disrupted the

ability of EN-Social to integrate social and appetitive information

in a manner that regulated individual behavior. Critically, since

the mutants continued to exhibit normal social preference, these

findings raise the intriguing potential that a different set of brain

circuits or networks may suboptimally regulate socially appeti-

tive behavior in the mutants. Future experiments in which elec-

tome networks are trained across larger groups of Ank2mutants

may clarify this question.

Overall, we set out to identify the network-level architecture

that encodes a social-appetitive brain state in mice. Using ma-

chine learning,wediscovered anetwork that both encodes social

versus objection conditions and the individual social preference

of mice across a population. Conceptually, we reasoned that

this network should also capture appetitive information to suc-

cessfully encode these two features. We then used behavior as

a causal manipulation to validate the social versus object and

appetitive encoding functions of the network. In each case, we

also found that the network generalized to new subjects. More-

over, we also showed the network only regulated individual

behavioral differences related to social function, thereby estab-

lishing its selectivity. Finally, we employed a series of causal op-

togenetic manipulations and a causal genetic manipulation

related to ASD to validate the architecture of the network and

its social encoding properties. Together, these findings provide

compelling evidence that EN-Social encodes a generalized so-

cial-appetitive brain state in healthy mice. Moreover, we also

show that thenetwork encodes individual differences inbehavior.

Social dysfunction is at the heart of nearly all psychiatric disor-

ders. Nevertheless, the neural substrates that play a determina-

tive role in individual social behavioral outcomes remain elusive.

This is in part due to the lack of socially relevant biomarkers in

preclinical models that generalize on a subject-by-subject basis.

Overall, this study establishes a collection of neural circuits that

corporately encode the appetitive brain state underlying individ-

ual differences in social behavior. Thus, this network can serve

as a novel substate to objectively quantify social brain state func-

tion in a broad range of mouse models of psychiatric disorders.
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Deposited data
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal care and use
Male and female C57BL/6J (C57) mice purchased from the Jackson Labs were used for two-chamber experiments used to train the

initial Electome model, the subsequent studies using the free object social interaction test, the forced interaction test, the elevated

plus maze, the sucrose consumption task, and the optogenetic manipulation studies. Ank2 mutant mice were generated as previ-

ously described (Yang et al., 2019). These male mutants and their WT littermate controls were bred within the Duke Vivarium.

C3H strain mice used for the two-chamber social interaction test were purchased from Jackson Labs. CD1 male mice purchased

from Charles River Laboratory. CD1 mice were individually housed. All other mice were housed 3-5 per cage. Mice were maintained

on a 12-hour light/dark cycle, in a humidity- and temperature-controlled room with water and food available ad libitum.

Studies were conducted with approved protocols from the Duke University Institutional Animal Care and Use Committee and were

in accordance with the NIH guidelines for the Care and Use of Laboratory Animals. Studies were conducted using mice that were

12-24 weeks old.

METHOD DETAILS

Electrode implantation surgery
Mice were anesthetized with 1% isoflurane, placed in a stereotaxic device, and metal ground screws were secured above the

cerebellum and anterior cranium. The recording bundles designed to target basolateral and central amygdala (AMY), medial dorsal

thalamus (MD), nucleus accumbens core and shell (NAc), VTA, medial prefrontal cortex (mPFC), and VHip were centered based on

stereotaxic coordinates measured from bregma (Amy: -1.4mm AP, 2.9 mm ML, -3.85 mm DV from the dura; MD: -1.58mm AP,

0.3 mm ML, -2.88 mm DV from the dura; VTA: -3.5mm AP, ±0.25 mm ML, -4.25 mm DV from the dura; VHip: -3.3mm AP, 3.0mm

ML, -3.75mm DV from the dura; mPFC: 1.62mm AP, ±0.25mm ML, 2.25mm DV from the dura; NAc: 1.3mm AP, 2.25mm ML,

-4.1 mm DV from the dura, implanted at an angle of 22.1�). We targeted cingulate cortex, prelimbic cortex, infralimbic cortex using

the mPFC bundle by building a 0.5mm and 1.1mm DV stagger into our electrode bundle microwires. Animals were implanted bilat-

erally in mPFC and VTA. All other bundles were implanted in the left hemisphere. The NAc bundle included a 0.6mmDV stagger such

that wires were distributed across NAc core and shell. We targeted BLA and CeA by building a 0.5mm ML stagger and 0.3mm DV

stagger into our AMY electrode bundle. In order to mitigate pain and inflammation related to the procedure, all animals received car-

profen (5 mg/kg, s.c.) injections once prior to surgery and then once every 24 hours for three days following electrode implantation.

Histological confirmation
Histological analysis of implantation sites was performed at the conclusion of experiments to confirm recording sites used for neuro-

physiological analysis. Animals were perfused with 4% paraformaldehyde (PFA) and brains were harvested and stored for 24 hrs in

PFA. Brains were cryoprotected with sucrose and frozen in OCT compound and stored at -80�C. Brains were sliced at 35mm and

stained using either DAPI (ab104139, AbCam, Cambridge, MA), NeuroTrace fluorescent Nissl Stain (N21480, ThermoFisher Scien-

tific, Waltham, MA) or cresyl violet (C5042, Sigma-Aldrich, St. Louis, MO) using standard protocols. Images were obtained using a

Nikon Eclipse fluorescencemicroscope at 4x and 10xmagnifications. We took the following approaches to histological confirmation.

When we performed complete histological analysis on 54 animals, we found 11/432 mistargeted implants (2.5% error rate). We

observed a similar error rate (�3%) after complete histological analysis on an additional 56 mice. Since machine learning analysis

benefits from larger data sets and can be more robust to data variance than classic frequentist statistics, we employed the following

strategy. To learn our EN-Socialmodel, we concluded that a training set containing 27/28 accurate data points per region was more

desirable than a training set that contained 21/21 accurate data points per region. Thus, we used all 28 implanted animals to learn our

initial model. We employed a similar strategy for our validation analysis. Specifically, presuming accurate targeting with 97% cer-

tainty, we included animals withmissing or damaged histological slices in our analysis. However, if there was clear histological confir-

mation of mistargeting for any of the recorded regions, the animal was removed.

Neurophysiological data acquisition
Mice were connected to a headstage (Blackrock Microsystems, UT, USA) without anesthesia, and placed in each behavioral arena.

Neuronal activity was sampled at 30kHz using the Cerebus acquisition system (Blackrock Microsystems Inc., UT). Local field poten-

tials (LFPs) were bandpass filtered at 0.5–250Hz and stored at 1000Hz. An online noise cancellation algorithm was applied to reduce

60Hz artifact. Neuronal data were referenced online against a wire within the same brain area that did not exhibit a SNR > 3:1. At the

end of the recording, cells were sorted again using an offline sorting algorithm (Plexon Inc., TX) to confirm the quality of the recorded

cells. Only cellular clusters well-isolated with respect to background noise, defined as a Mahanalobis distance greater than 3

compared to the null point, were used for our unit-Electome Factor correlation analysis. Clusters that exhibited more than 99% of

their inter-spike-interval distribution above 2ms were defined as single units (93.5% of recorded neurons). Ultimately, we chose to

use both single and multi-units for our analysis since our sole objective was to determine whether the Electome Network activity
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showed temporal dynamics that reflected cellular activity. This strategy mirrors our prior experiments probing the network level

mechanisms underlying depression vulnerability (Hultman et al., 2018). Neurophysiological recordings were referenced to a ground

wire connected to both ground screws.

LFP preprocessing to remove signal artifact
We used a heuristic to remove recording segments with non-physiological signals. First, we estimated the envelope of the signal in

each channel using the magnitude of the Hilbert transform. For any 1-second window where the envelope exceeds above a pre-

selected low threshold, the entire segment is removed if the envelope exceeds a second, high threshold at any point within that win-

dow. The two thresholds were determined independently for each brain region. The high threshold was selected to be 5 times the

median absolute deviation of the envelope value for that region. Five median absolute deviations was chosen as the high threshold

because it is roughly equivalent to 3 standard deviations from the mean for normally distributed data, but is robust to outliers in the

data. The low threshold was empirically chosen to be 3.33% of the high threshold. If more than half the window was removed for a

channel, we removed the rest of that window for that channel as well. In addition, any windows where the standard deviation of the

channel is less than 0.01 were also removed. Using this approach, 13±3.5% of the data/mouse (n = 28 for our model training) were

excluded from this analysis. This conservative strategy optimized the potential of our learning model to discover a network that was

uniquely related to appetitive social emotional brain states.

Determination of LFP oscillatory power and cross-area synchrony and granger coherence
LFPs were averaged across wires within region to yield a composite LFP measure. Signal processing was performed using Matlab

(The MathWorks, Inc., Natick, MA). For LFP power, a sliding Fourier transform with Hamming window was applied to the averaged

LFP signal using a 1 second window and a 1 second step. Frequencies were analyzed with a resolution of 1Hz. LFP cross-structural

coherence was calculated from the pairs of averaged LFPs using magnitude-squared coherence

CABðfÞ = jPsdABðfÞj2
PsdAAðfÞPsdBBðfÞ

where coherence is a function of the power spectral densities of A and B, and their cross-spectral densities.

The spectral Granger causality (Geweke, 1982) features were calculated using theMultivariate Granger Causality (MVGC)MATLAB

toolbox (Barnett and Seth, 2014). The non-stationary data required a highpass, so a highpass Butterworth filter with a stopband at

1Hz and a passband starting at 4Hz was applied to the data. Granger causality values for each window were calculated using a 20-

order AR model via the GCCA_tsdata_to_smvgc function of the MVGC toolbox. Granger causality values were calculated for all

integer frequency values within the desired range for all directed pairs of brain regions in the dataset.

For calculating electome network using, the exponential of all Granger causality values was used, which gives a ratio of total power

to ‘unexplained’ power. Since the original formulation involves logarithms, it hinders the addibility of the features, so the exponential is

suitable for inclusion in the electome model. Specifically,

expðfY/XðlÞÞ = jSXXðlÞj��SXXðlÞ � HXYðlÞSYjXHXYðlÞ�
��

where fY/XðlÞ represents Granger causality at frequency l from region Y to region X, SXXðlÞ represent the spectral power in region X

at frequency l, and HXY ðlÞSY jXHXY ðlÞ� represents the component of that power that is predicted by region Y. We capped values for

this ratio at 10 to prevent any non-physiological signal from dominating the electome factors we learned using dCSFA-NMF.

Discriminative Cross-Spectral Factor Analysis – Nonnegative Matrix Factorization
To apply our Supervised Cross-Spectral Factor Analysis – Nonnegative Matrix Factorization (CSFA-NMF) model, which fully

described elsewhere (Talbot et al., 2020), we consider each window of data to be an independent stationary measurement. This im-

plies that the relevant dynamics happens at the scale of windows, so the extracted electome scores are all that is needed for later

analysis. In this work, we choose a 1 second window because this balanced fine-grained behavior with enough length of signal to

estimate the relevant LFP features. Prior work has shown relative robustness to windows between 0.5s to 5s in similar methods (Ul-

rich et al., 2015), sowe expect similar results for similar window lengths; however, 5s herewould not be able to capture the short-term

scale of behavior necessary for this analysis.

For each window of data, we have the generated features, consisting of spectral power features, coherence features, and expo-

nential granger features, totaling P distinct features per window. Using the subscript n to denote window and state that there are N

total windows. We describe the preprocessed data as xn˛RP
+ (the P-dimensional non-negative domain) and the observed behavioral

label as yn˛f0;1g, where the binary indicates a social or non-social behavioral label. To briefly described this model, we set up an

objective function to learn the K different electome factors,

min
W; d; 4

XN

n= 1

kxn �Wfðxn;4Þk22 + lkyn � dTfðxn;4Þk22;
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where each electome is described by a column inW˛RP3K
+ (e.g.,W = ½w1;.;wK �), the electome factor scores are given by the multi-

output function fðxn;fÞ : Rp
+/RK

+ , and the relationship between the electome factor scores and the behavioral labels is given by d˛
Rp. This equation has a mean squared error loss on the behavior labels. In practice for binary behavioral labels, we instead use a

binary cross-entropy loss. The relative importance of reconstructing the observed data and the importance of the predictive task

were balanced by choosing the hyperparameter l. This represents a novel method to fit an NMF model using supervised autoen-

coders and requires the user to choose a parametrization for fðxn;fÞ. In our method, this is simply set to an affine function following

by a non-linearity, fðxn;fÞ = softplusðAx +bÞ, where the parameters of the function are f= fA;bg and the softplusmeans an element-

wise operation of the operation softplusðaÞ = logð1 + expðaÞÞ, which maps a real number to the non-negative space. This function

can vary in complexity to allow greater model complexity, but we found that this function was sufficient in practice. Because this

objective function follows a supervised autoencoder structure, a common deep learning structure, we are able to implement this

technique in Tensorflow (Abadi et al., 2016) using the ADAM algorithm for learning (Diederik and Ba, 2014).

A benefit of using this structure for learning is that performing statistical inference from new data is fast and straightforward. In fac-

tor models, one typically has to set up an optimization algorithm to find the maximum a posteriori estimate. However, in our super-

vised CSFA-NMF framework, we can calculate the electome scores on new data simply by calling the function fðxn;fÞ, allowing easy

portability and facilitating future real time applications.

Hyper-parameter selection
The proposed CSFA-NMF procedure requires us to choose several different settings in the algorithm, which was done with a cross-

validation procedure where complete mice from the training set were left out. The hold-out mice, as described in the manuscript,

were not used for hyperparameter selection and represent a true blind test set. Specifically, wemust choose the number of electome

factors K, the importance of the supervised task l, the relative importance of the power features, coherence features, and exponen-

tial Granger features, and the parameterization of the mapping function fðxn;4Þ.
We had dual goals in our analysis: reconstructing the original data well, which is to say that the learned Electomes actually describe

the neural measurements well and predict the behavioral task well. The reconstruction error was evaluated by the Mean Squared

Error on the validation mice, and the performance on the behavioral task was evaluated by the mean Area Under the Curve (mean

AUC) on the validation mice. Greater emphasis was placed on the behavioral task, so for each candidate number of electome net-

works K, we used the cross-validation procedure to choose the settings that maximized the mean AUC. After that, an elbow analysis

was used to choose the number of electome networks K, which is to mean we choose the K after which minimal gains in explaining

the observed data was observed.

Two-chamber social interaction test
Social preference was measured using a two-chamber assay in which animals explored a novel object or a novel mouse. The appa-

ratus was a rectangular arena (61cm 3 42.5cm 3 22cm, L3W3H) constructed from clear plexiglass with a clear plexiglass wall

dividing the arena into two equal chambers with an opening in the middle allowing free access between both chambers. The floor

of the arena was constructed using a one-way mirror that allowed for video recording from beneath in order to avoid obstruction

from electrophysiological recording equipment. Plastic, circular holding cages (8.3cm diameter and 12cm tall) were centered in

each of the two chambers and were used to house either a novel object or sex- and age-matched C3H target mouse. The arena

was evenly lit with indirect white light (�125 lux). Test mice were handled and habituated to the social preference chambers and

empty holding cages for a least three days prior to testing. Subsequently, mice underwent ten separate social preference test ses-

sions, with at least one day off in between sessions, in which the testmicewere allowed to freely explore the arena for tenminutes; the

holding cages contained either a novel object or novel C3H target mouse. The side of the chamber holding the object/mouse was

determined pseudorandomly, such that the object/mouse would not be placed in the same chamber on more than two consecutive

sessions in order to prevent side biases and to distinguish target-specific effects from location-specific effects. Plastic toys and glass

objects were used as novel objects with the object being between 3-5cm in all directions. Video data was tracked using Bonsai Visual

Reactive Programming software and the time spent in the proximity (�5cm) of either holding cage was used to determine social pref-

erence scores.

The social preference for each session was defined as:

InteractionTimeS � InteractionTimeO

InteractionTimeS + InteractionTimeO

where InteractionTimeS is the total time spent proximal to the other mouse, and InteractionTimeO is the total time spent proximal to

the object.

Free Object/Social Interaction Test
The Free Object/Social Interaction Test (FOSIT) allowed for free exploration of either novel objects or novel sex-matched conspecific

mice during a single session. Plastic and glass objects were used similarly to social preference testing. The test was run in a clear

arena (35cm 3 31cm) lit using indirect white light (125 lux). The test mouse was placed into the arena that contained either a novel
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object or a target mouse and allowed free exploration (i.e., the objects/mice were not kept in holding cages as in the social interaction

test) for five minutes. Following this five-min trial, the test mouse was placed into a new, identical arena that contained either a novel

object or novel mouse for another five minutes. The order of object/mouse trials was determined pseudorandomly, such that the test

mouse would not see a novel object or mouse for more than two consecutive sessions in order to prevent habituation to the stimulus

type. Additionally, in order to control for the location of the target mouse, the novel object was pseudorandomly placed in one of four

quadrants of the area such that each subsequent object placement was in a different quadrant from the previous object trial and that

each quadrant was used at least once. A total of ten trials were run so that each test mousewas able to interact with five novel objects

and five novel mice over the course of the �50-min session. The amount of time interacting with the objects and target mice was

hand-scored by experienced raters. For social trials, interactions were distinguished based on physical engagement (i.e., reciprocal

interaction, test mouse investigating the target mouse, and target mouse investigating the test mouse).

Spike-Electome Factor activity correlation
Data acquired during the fifth session of the two-chamber social interaction test were used for this analysis. Cellular firing activity was

averaged within one-sec non-overlapping windows for the ten-min recording period. The social firing preference of each cell was

defined as:

FRS � FRO

FRS +FRO

where FRS is the neuronal firing rates observed during social interactions and FRO is the neuronal firing rates observed during inter-

actions with an object. A rank-sum test of all one-sec observations was used to determine if a cell signaled social vs. object inter-

actions. We used a spearman rank correlation to quantify the relationship between cellular firing during the ten-minute sessions

and Electome Factor activity. We performed 1000 permutations for which Electome activity time bins were randomly shuffled within

the social and object conditions. We then calculated the spearman rank correlation for each permutation. A cell was deemed to be

positively correlated with the Electome network if it exhibited a spearman Rho above the 97.5% of the permutated distribution, and

negatively correlated if it was below the 2.5%.

Sucrose consumption
Neural responses to sucrose or water delivery were measured in a rectangular chamber (30cm 3 19cm 3 28cm) constructed from

black plastic Legos. Two nose poke holes, spaced 6.5cm apart along one of the long walls, detected nose pokes via IR beam

breakage and delivered 10mL of fluid from a 27-gauge syringe situated within the hole; a five-sec timeout followed each fluid delivery

in which subsequent nose pokes were not rewarded. Mice implanted with electrodes were habituated to the fluid drinking apparatus

for two days prior to electrophysiological recordings. During habituation, singly housed mice had ad libitum access to food and used

the nose poke holes for access to water. Subsequently, electrophysiological recordings were collected during two fluid-drinking ses-

sions: one for sucrose and one for water. Specifically, two hours into the dark-cycle, mice were recorded for 1.5 hours while poking

for administration of a 2% sucrose solution from both poke holes. Immediately following sucrose administration, the sucrose was

switched out and water was delivered through the poke holes for an additional two hours. Timestamps for each nose poke were syn-

chronized and stored alongside electrophysiological data.

Elevated plus maze test
The elevated plus maze (EPM) has been previously described. Briefly, the EPM consists of four cross-shaped arms (30.5cm length3

30.5cmwidth, at 91.4cm height from floor) and a 5cm35cm central region. Two ‘closed’ arms are surrounded on three sides by walls

of 16.5cm height and the other two ‘open’ arms are surrounded by a short piece of tape approximately 1 mm in height. Mice were

habituated to the behavioral room for two hours, 24 hours before testing. Following a one-hr habituation period on the test day mice

were placed in the center region of the elevated plus maze facing a closed arm. Neural recordings were obtained for tenminutes, and

the location of the mice was captured using video recordings. All EPM testing was performed at 50 lux.

Chronic social defeat stress
Male mice implanted with electrodes underwent 10 days of cSDS as previously described (Berton et al., 2006; Hultman et al., 2016;

Hultman et al., 2018; Krishnan et al., 2007). Specifically, male retired-breeder CD1 (Charles River) mice were used as resident ag-

gressors for the social defeat and were singly-housed prior to the experiments. C57 mice were then randomly assigned to control

or defeat groups such that no entire cage was assigned to the same group. All C57 mice were singly housed prior to being subjected

to cSDS. Particularly aggressive CD1s, as defined by demonstrating at least one successful act of aggression toward an intruder C57

malewithin 60 secs, were selected for use for cSDS. Intrudermale C57micewere introduced to the cage of a novel CD1 aggressor for

5 min daily, and then housed adjacent to the same aggressor for 24 hrs. During this time, mice were separated by a transparent and

porous plexiglass barrier to enable constant sensory exposure.

During bouts of exposure to the CD1mice, hallmark behavioral signs of subordination stress were observed including escape, sub-

missive postures (i.e., defensive upright and supine) and freezing. Following the last 24-hr exposure to a CD1 aggressor mouse, all
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C57s were housed individually. Mice that exhibited significant injuries during social defeat stress were removed from post-stress

analysis (Hultman et al., 2016). These methods are identical to those previously described (Hultman et al., 2018).

Neural recordings during averse social interaction
We utilized the previously described forced interaction test (Hultman et al., 2016; Hultman et al., 2018; Kumar et al., 2014). Briefly,

C57 mice were placed in a 3.25’’ x 7’’ Plexiglas cylinder. Following a 5-min neurophysiological recording period, a CD1 aggressor

mouse was introduced to the cage outside of the cylinder (18’’ high walls surround the outer cage to prevent escape and a lid is place

over the inner chamber to prevent the aggressor from climbing in). Neurophysiological data were then recorded for five additional

minutes. Neural data acquired during the full 10-minute recording period was utilized for subsequent analysis.

Choice social interaction test (Post Chronic stress)
Male mice were placed within a novel arena (46cm x 46cm) with a small cage located at one end, and each mouse’s movement was

monitored for 150 seconds. Mice were then removed from the testing chamber, and reintroduced 30 seconds later after a non-

aggressive male CD1 mouse was placed in the small cage. The time C57 mice spent in the interaction zone was quantified using

Ethovision XT 7.1 software (Noldus Information Technology, Wageningen, Netherlands). The interaction ratio was calculated as

(Interaction time when CD1 was present)/(Interaction time when CD1 was absent) (Hultman et al., 2016; Kumar et al., 2014). These

methods are identical to those previously described (Hultman et al., 2018). Notably, only mice that showed social avoidance were

utilized for further network analysis.

Optogenetic manipulation of the prelimbic circuit elements
Ten-week only mice were anesthetized with 1.% isoflurane and placed in a stereotaxic device. A 33-gauge Hamilton syringe was

used to infuse 0.5 ml of AAV5-CaMKlla-hChR2 (E123A)-EYFP vector at a rate of 0.1 ml/min, bilaterally, into prelimbic cortex

(1.8mm AP, ±0.5mm ML, 2.5mm DV from the skull) and the syringe was left in place for ten minutes following the injection. In order

to mitigate pain and inflammation related to the procedure, all animals received carprofen (5 mg/kg s.c.) injections once prior to sur-

gery and then once every 24 hours for three days following viral injections.

Eight weeks after viral surgeries, mice were anesthetized again, and recording electrodes were implanted as described above. A

fiberoptic cannula was built into the nucleus accumbens or amygdala bundle (Hultman et al., 2016; Kumar et al., 2013). The tip of the

100mmdiameter fiberoptic (Doric Lenses) was situated 400mmabove the tip of the recordingmicrowires in the core of the accumbens

or amygdala. In vivo recordings and stimulations were conducted after 5–6 weeks of recovery. For Nac stimulations, we delivered

light stimulation at 1–7mW bilaterally (473nm wavelength, LaserGlow, LRS-0473-GFM-00100-05; 589nm wavelength, LaserGlow,

LRS-0589-GFF-00100-05), and the laser output was verified using a Power meter (Thorlabs, PM100D). We first stimulated a group

of mice (n=3) at 7mW to mirror a prior study (Murugan et al., 2017). All these animals exhibited seizures (observed behaviorally and

confirmed using LFP recording). Repeat stimulation several days later at 1.5mW also induced seizures in these mice. We tested two

additional stimulation naı̈ve mice at 1.5mW, and one of these mice exhibited seizures as well. Thus, all experiments presented in the

main manuscript were performed in mice with no prior stimulation. Mice were stimulated at 1mW bilaterally. Several mice showed

ictal activity in the cortical channels at the onset of stimulation. Ictal activity was accompanied by immobility, backwards walking,

and grooming in thesemice. Ictal activity (restricted to the cortical channels) and behavioral responses subsided spontaneously usu-

ally within 5–10 seconds of stimulation onset, at which time mice became behaviorally activated and showed increase social inves-

tigation. For amygdala stimulation experiments, we used 1mW at 10Hz.

Recordings were performed in six blocks during a single session. In each block mice were exposed to a new object and a new

mouse. Each block lasted 7.5 minutes, during which mice were stimulated with blue light for 2.5 minutes and yellow light for 2.5 mi-

nutes, with 1.25minutes between each stimulation period. The order of blue vs. yellow light stimulation and social vs. object exposure

was pseudorandomized for eachmouse, such that animals never experienced the same color light stimulation first for all three social

or object blocks. Additionally, the order of the social vs. object exposures were pseudorandomized for each block such that mice

never experienced all three social or object exposures first.

For nucleus accumbens stimulation studies, two mice exhibited global LFP responses to stimulation and were removed from

further analysis. One mouse did not show any LFP responses to stimulation in nucleus accumbens and was thus removed from

further analysis. For amygdala studies, none of the mice exhibited local LFP responses in amygdala during stimulation. This was

consistent with the weaker PFC projections observed in amygdala C57BL6/J mice compared to nucleus accumbens (Oh et al.,

2014). Viral expression was confirmed histologically following experiments (see Figures S4G and S4H).

For analysis, behavior was hand-scored from video recordings as described above by experienced raters blind to laser conditions

(blue vs. yellow). We combined behavioral and neurophysiological measures for all periods in which the subject mouse was engaged

with the othermouse (unilateral or bilateral). EN-Social activity observed during these social encounters was normalized to the activity

observed during object encounters and compared across blue and yellow light stimulation trials. Periods in which the experimental

partner mouse was unilateral engaged with the subject mouse were excluded.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Electome model fitting
The statistical analyses for the Electome model were performed using Python 3.6 and Tensorflow version 1.09. We used machine

learning to define a single relevant electome. The total number of Electomes was chosen to minimize the reconstruction loss with

theminimal number of factors as defined previously. The reconstruction loss wasweighted such that eachmouse and each condition

were weighted equally. The supervision loss weighting was determined as the amount of entropy contained in the binary variable of

social vs object score. The supervision strength was started at a low value and gradually annealed to the final value.

While multiple Electomes networks were learned from the training data, only one electome network’s activity was predictive of the

social activity. Therefore, when applied to the test set, only this electome was evaluated statistically, so no multiple comparisons

corrections were required (a major advantage of such a factor model formulation). The predictive ability for each mouse was quan-

tified using the area under the curve using the network strengths.

Validation testing
For validation testing, we projected LFP data recorded from new mice and/or new paradigms into our initial learned Electome

network model. We then performed direct comparison across conditions (e.g., behavioral conditions, genotypes, etc.) using the me-

dian Electome network activity score for each condition per mouse. Activity scores were compared using non-parametric statistics,

or parametric statistics a Box–Cox transformation was applied the raw data. To further enable evaluation of the robustness of our

findings, the decoding strength (area under the curve of the receiver operating characteristic, which takes into account the activity

scores for all of the transformed time windows) was also provided in the main text alongside the statistical results obtained through

direct comparisons of the median activity scores. For optogenetic validation studies we normalized network activity observed social

interactions to the network activity observed during object interactions for each stimulation type (blue vs. yellow). We utilized this

strategy because the 10 Hz signal induced in cortex and striatum had the potential to diminish our detection of EN-Social (which re-

flected organized LFP patterns at frequencies including 10Hz). A longer-term solution will require the implementation of NMF-based

statistical approaches that reconstruct EN-Social activity from data sets in which a subset of areas are excluded (see our prior model

based on gaussian processes as an example) (Gallagher et al., 2017).
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