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Abstract

Systems neuroscience aims to understand how networks of neurons distributed throughout the

brain mediate computational tasks. One popular approach to identify those networks is to first

calculate measures of neural activity (e.g. power spectra) from multiple brain regions, and then

apply a linear factor model to those measures. Critically, despite the established role of directed

communication between brain regions in neural computation, measures of directed communication

have been rarely utilized in network estimation because they are incompatible with the implicit

assumptions of the linear factor model approach. Here, we develop a novel spectral measure of

directed communication called the Directed Spectrum (DS). We prove that it is compatible with

the implicit assumptions of linear factor models, and we provide a method to estimate the DS.

We demonstrate that latent linear factor models of DS measures better capture underlying brain

networks in both simulated and real neural recording data compared to available alternatives.

Thus, linear factor models of the Directed Spectrum offer neuroscientists a simple and effective

way to explicitly model directed communication in networks of neural populations.

1 Introduction

A major goal in neuroscience is to characterize how populations of neurons work together

to carry out computational tasks [1]. A well-known example is the biological neural network

that identifies low-level visual features such as edges. That network sends signals from the

retina to the lateral geniculate nucleus, then from there to the primary visual cortex, then

finally to higher cortical visual processing regions [2, 3]. While some biological neural

networks are well known, we expect that the vast majority remain undiscovered due to the

enormous variety of tasks the brain performs. Many methods have been developed to help

discover latent networks of neural populations (i.e. brain networks) [4–6]. A key aspect of
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such methods is that they should be interpretable, meaning that a neuroscientist must be able

to use the model to draw conclusions about brain function [7]. Unfortunately, many types of

common models in the machine learning literature do not offer this type of interpretability

[8].

One class of widely-used models that is considered interpretable for modeling brain

networks is Linear Factor Models (LFMs) [9, 10]. This family includes popular methods

like principal component analysis (PCA) and independent component analysis (ICA), and

are used across almost all modalities in neuroscience to model brain networks. For example,

ICA is regularly used in functional magnetic resonance imaging (fMRI) applications to

identify latent brain networks such as the default mode network [11, 12]. A common

approach in neuroscience is to apply an LFM to some measure or extracted feature from

the recorded signal, rather than to the recorded signals themselves, in order to get a model

of brain networks that are characterized in the desired measure. For example, power spectra

are often calculated from raw electroencephalogram (EEG) recordings before an LFM is

applied, yielding brain networks defined by power spectra [13, 14]. In multi-site local field

potential (LFP) data, LFMs have been applied to identify latent brain networks that are

defined by a cross-spectral covariance matrix [15].

One kind of measure that could be especially informative for defining latent brain networks

is directed communication between brain regions. However, LFMs that directly incorporate

measures of directed communication are lacking. We believe that this is because existing

measures of directed communication, such as Granger causality [16], are incompatible with

the implicit assumptions of using LFMs to identify brain networks. This incompatibility

between standard measures of directed communication and LFMs is discussed further in

Sections 2 and 4. In a previous attempt to capture directed communication within an

interpretable brain network model, Gallagher et al. [15] modeled networks in terms of phase

shifts in spectral content between neural populations, but it is unclear if such phase shifts are

an appropriate proxy for directed transmission of signals, and those models are bottlenecked

by significant computational time.

In response to this methodological gap, we introduce a novel measure of directed

communication that we will refer to as the Directed Spectrum (DS). The Directed Spectrum

estimates directed communication between time series in the frequency domain. We

prove that these measures are a linear function of latent brain networks under reasonable

assumptions, making them compatible with LFMs in this application. We then demonstrate

that an LFM of DS measures recovers latent networks in a simulated dataset where the

ground truth networks are known. We compare the performance to several competing

directed communication measures, including Spectral Granger Causality [17], and show that

using the Directed Spectrum results in significantly higher quality reconstruction of the true

brain networks. Finally, we show that latent brain networks identified from real neural data

via the Directed Spectrum can decode behaviorally relevant information with much higher

fidelity.
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2 Linear factor models (LFMs) for identifying brain networks

The term linear factor model [18] describes any model that seeks to approximate a data

vector xn as,

xn = ∑j = 1
J Zn

(j)x(j) + ϵn . (1)

The vectors x(1), …, x(J) are the J different latent factor loadings, ϵn is a noise term, and Zn
(j)

is the activation score of the jth factor in the nth sample. xn represents a single sample from

a larger dataset, [x1, …, xN]. Many well-known models, such as PCA [19], ICA [20], and

nonnegative matrix factorizaton [21], are LFMs. LFMs are frequently used for modeling and

discovering brain networks [10]. In that context, it is straightforward to interpret the factor

scores, Zn
(j), as the activation levels for a set of brain networks. Likewise, we can interpret

the factor loading x(j) as the observable signature of the jth brain network. LFMs are quite

flexible; a wide variety of assumptions can be made regarding the structure of the factors,

the scores, and the noise distribution [6, 9, 22]. The fact that LFMs are interpretable and

adaptable to most data types has made them a standard model class for studying latent brain

networks.

Note: For simplicity, the subscript n will be dropped from all variables for the remainder of

this document. In cases where it is important that a variable is constant over all samples,

such as the factor loadings x(j), we will explicitly state it.

2.1 Compatibility between linear factor models and measures of neural activity

It is common to model measures of neural activity recordings rather than modeling the

recording directly. In this work, we assume that the vector x contains measures calculated

from multi-channel time-series recordings, V = [v1, …, vK]⊤, where K is the number of

channels and vc ∈ ℝT  is the row of V corresponding to a recording from a single channel

c. The frequency domain representations of these quantities will be marked by a tilde (e.g.

vc(ω) is the frequency domain representation of vc). A typical choice for x is to convert the

observed data into a set of power spectra (Scc) for each channel [13, 23],

Scc(ω) ≡ E vc(ω) 2 . (2)

Modeling these measures in an LFM leads to the latent factor loadings x(j) being described

in terms of power spectra associated with each channel. The chosen measures dictate the

representation of the discovered networks, so we want to use relevant and easy-to-interpret

measures.

An implicit assumption in this application of LFMs is that the measures contained in x are

linear functions of the latent brain networks. This is seen in (1) where the observed measure

is a linear function of the latent factor score Z(j) within some noise tolerance. We let X( ⋅ )
represent a function, such as (2), that produces the set of measures from our observed neural

data V.
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Definition 1. We call X( ⋅ ) a linear function of latent brain networks if

X(V ) = X ∑j = 1
J Z(j)Ω(j) = ∑j = 1

J Z(j)X Ω(j) , (3)

where Ω(j) represents the component of the neural data (V) that is due to the jth network,

normalized to represent a score of 1. In this way, X Ω(j)  represents the expected value of

the measure if the jth network was active with a score of 1 in isolation.

It can be shown that power spectra are theoretically consistent with this requirement (see

Supplemental Section A), but there are many measures that cannot obey this assumption.

For example, the Pearson correlation coefficient and Granger causality are two measures that

cannot obey this assumption (see Section 4). Including such measures in LFMs will lead to

suboptimal representations of latent brain networks.

3 Modeling directed communication in brain networks with LFMs

Measures capturing directed communication between neural populations are rarely included

in LFMs despite their frequent use in neuroscience [24–26]. We believe this is because such

measures, including Granger causality [16, 17], are not linear functions of brain networks

and therefore are poorly modeled by LFMs (see Section 4). Nonetheless, measures of

directed communication such as Granger causality are vital for the study of brain networks

[27, 28].

Below, we introduce a novel measure of directed communication within a network, which

we refer to as the Directed Spectrum (DS). In order to derive the Directed Spectrum, we first

build a general time-series model of latent brain networks in Section 3.1, and then define

how latent networks combine to produce the observed signal in Section 3.2. The Directed

Spectrum is formally defined in Section 3.3. It captures communication in a similar manner

to Granger causality while also being compatible with a linear model of brain networks.

3.1 Modeling brain networks as independent VAR processes

We outline a model where the output for each latent network is defined by a vector

autoregressive (VAR) process. For additional background on VAR models, see Supplemental

Section B. The model outlined below represents a general framework for understanding

what the DS measures capture, even though inferring it directly would be quite challenging.

We begin by assuming that we have J latent brain networks that each generate vector

timeseries outputs. Rather than slicing by channel as in Section 2, we define the output

series as V (j) = v1
(j), …, vT

(j) , where vt
(j) ∈ ℝK is the column of V(j) representing signal for all

channels at time t. The output series is associated with a VAR process,

vt
(j) = ∑τ = 1

pj Aτ
(j)v(t − τ)

(j) + σt
(j), σt

(j) N 0, Z(j)Σ(j) . (4)

We refer to σt
(j) as the innovations in the jth network at time t, and assume that they are

drawn iid from a zero mean Gaussian distribution. Each network has a single covariance
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structure over all samples (Σ(j)) that is scaled by an activation score (Z(j)) to define the

innovation distribution of the current sample. The set of autocovariance matrices for the

jth network Aτ
(j)  are also assumed to be constant over all samples. The innovation terms

represent new signal introduced into the network that cannot be explained by the past

network outputs v(t − 1)
(j) , …, v t − pj

(j)
. We can represent this network in the frequency domain

given standard assumptions regarding the stability of the VAR model [29],

v(j)(ω) = H(j)(ω)σ(j)(ω), H(j)(ω) ≡ I − ∑τ = 1
pj Aτ

(j)e−iτω
−1

, 0 ≤ ω ≤ 2π, (5)

where v(j)(ω) ∈ ℝK and σ(j)(ω) ∈ ℝK are the frequency domain representations of the series

v1
(j), …, vT

(j) and σ1
(j), …, σT

(j), respectively. The network transfer matrix (H(j)(ω)) is assumed to

be constant over all samples.

3.2 Modeling observed signal as a superposition of latent transmitted signals

In order to complete our model of latent brain networks, we must relate it to the observed

signal. We model each observed sample by a VAR in the frequency domain, analogous to the

way we modeled latent network outputs,

v(ω) = H(ω)σ(ω) . (6)

We assume that the K channels in our data are partitioned into a set of non-overlapping

groups, G = b, c, d, … . For example, each group can be a single channel to model all

inter-channel relationships, or could be all channels within a given brain region. We partition

the observed data and the transfer matrix H(ω) and innovations σ(ω) into these groups,

v(ω) =

vb(ω)
vc(ω)
vd(ω)

⋮

, H(ω) =

Hbb(ω) Hbc(ω) Hbd(ω)
Hcb(ω) Hcc(ω) Hcd(ω) …
Hdb(ω) Hdc(ω) Hdd(ω)

⋮

,

σ(ω) =

σb(ω)
σc(ω)
σd(ω)

⋮

, Σ =

Σbb Σbc Σbd
Σcb Σcc Σcd ⋯
Σdb Σdc Σdd

⋮

,

(7)

We assume that the networks outputs and corresponding VAR parameters are partitioned in

the same way. The ordering of these groups is arbitrary. Without loss of generality, we will

focus on modeling communication between groups b and c.

We examine how our VAR models represent communication between groups by noting that

vc(ω) = ∑g ∈ GHcg(ω)σg(ω) . (8)
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This shows that vc(ω) is a sum of contributions from each group g, including the self-

contribution from c. If the innovations in b and c are independent, then Hcb(ω)σb(ω) would

unambiguously represent the signal in c that can be attributed to innovations b. If the

innovations in b and c are not independent, then there is ambiguity regarding how to assign

‘responsibility’ for the observed signal in c. Specifically, the component of the innovations

in b that is correlated with innovations in c is not necessary to explain the observed signal

in c, since the innovations in c are sufficient to explain this part of the observed signal. We

will assume that only the uncorrelated component of the innovations in b contribute to the

observed signal in c.

Definition 2. The transmitted signal represents the contribution of the innovations in b to the
observed signal in c

TSb c(ω) =
Hcb(ω) σb(ω) − ΣbcΣcc

−1σc(ω) , b ≠ c

Hcc(ω) + ∑k = 1
K Hck(ω)ΣkcΣcc

−1 σc(ω), b = c .
(9)

By restricting TSb c(ω) to only convey uncorrelated innovations, we construct a more

conservative estimate of the effect of b on c. This is not the only choice that could be made;

for example, we could use the full innovations, but we believe that using the uncorrelated

innovations provides the cleanest interpretation.

We complete our model of the observed signal v(ω) with the following two assumptions:

Assumption 1. The innovations associated with any network are independent of the
innovations in all other networks.

Assumption 2. The transmitted signals of the observed data are the sum of the
corresponding transmitted signals for the latent networks,

TSk c(ω) = ∑j = 1
J TSk c

(j) (ω), (10)

where the transmitted signal is defined for the latent networks as

TSb c
(j) (ω) =

Hcb
(j)(ω) σb

(j)(ω) − Σbc
(j)Σcc

(j)−1
σc, n

(j) (ω) , b ≠ c

Hcc
(j)(ω) + ∑k = 1

K Hck
(j)(ω)Σkc

(j)Σcc
(j) −1

σc
(j)(ω), b = c

. (11)

Assumption 1 can be thought of as enforcing the independence of inputs to each network.

Assumption 2 is equivalent to the following two statements: 1) the propagation of signal

within each network is independent of propagation in each other network, and 2) the

observed outputs occur in some medium where simultaneously occurring phenomena obey

the laws of superposition, which is a property of many neural activity measurement

modalities (e.g., electrical potentials, fluorescence). By combining these two assumptions

with (8), we get the result that the observed data are a superposition of the network outputs,
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vc(ω) = ∑g ∈ GHcg(ω)σg(ω) = ∑g ∈ GTSg c(ω) (12)

= ∑g ∈ G ∑j = 1
J TSg c

(j) (ω) = ∑g ∈ G ∑j = 1
J Hcg

(j)(ω)σg
(j)(ω)

= ∑j = 1
J vc

(j)(ω) .
(13)

Note in (12) and (13), summing the transmitted signals to c over all source groups, including

c, causes the conditioning terms in our definitions of the transmitted signal to cancel out.

Because the relationship above does not contain a noise term, non-physiological sources of

signal would simply be represented as additional networks in the model. This completes our

model of the relationship between latent brain networks and observed signals.

3.3 The Directed Spectrum

The model defined above provides a framework for determining whether a measure of neural

recordings can be considered a linear function of latent brain networks.

Definition 3. We define our measure, the Directed Spectrum (DS), as the second moment of
the transmitted signal,

DSb c(ω) ≡ E TSb c(ω)TSb c* (ω) = Hcb(ω)Σb ∣ cHcb* (ω),

Σb ∣ c = Σbb − ΣbcΣcc
−1Σbc* ,

(14)

where Σb|c represents the innovation variance for b conditioned on the innovations in c.

The Directed Spectrum corresponds to the portion of the power spectrum for c that is

explained by signal that originated in b (see Supplemental Section C for more details). It is a

linear function of the latent networks when data is appropriately modeled as described above

(for proof, see Supplemental Section D).

The Directed Spectrum can be estimated efficiently by fitting a VAR model to the observed

data or via factorization of the cross-spectral matrix associated with the observed data [24,

30, 31]. Additional algorithmic details can be found in Supplemental Section F.1. These DS

measures can be calculated according to (14) for data partitioned into any number of groups

greater than one. In some situations, it is desirable to calculate the DS values separately

for each pair of groups, by estimating H(ω) and Σ using reduced models that contains only

two groups per model. We refer to this method as the Pairwise Directed Spectrum (PDS).

One benefit of the PDS is that it simplifies the handling of missing channels from the data,

since the PDS for the non-missing groups of channels can still be calculated without any

adjustments.

4 Related measures of directed communication

The Directed Spectrum is a necessary development because similar measures typically

used in neuroscience are not linear functions of latent brain networks. We first examine

Granger causality, which measures the degree to which one signal or group of signals
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helps predict future values of another signal or group [16]. Spectral Granger causality is

a modification that separates Granger causality into components associated with individual

frequencies [17]. It is a leading spectral measure of directed communication in neuroscience

[24, 25], and we view it as conceptually the closest measure to the Directed Spectrum.

The (unconditional) spectral Granger causality from b to c can be defined in terms of the

Directed Spectrum,

fb c(ω) = ln Scc(ω)
Scc(ω) − DSb c(ω) . (15)

It is also possible to calculate a conditional spectral Granger causality that accounts for all

other groups in the recording before assigning influence from b to c [32]. Neither form of

spectral Granger causality is a linear function of the network models described in Section

3. To see this, consider the case where only the jth network is present without any other

signals being added to it. Note that changing Z(j) would then have no impact on fb→c(ω)

because both the numerator and denominator in (15) would scale equally with Z(j). Standard

(non-spectral) Granger causality is equivalent to a scaled integral over all frequencies of the

spectral Granger causality [17], meaning that it also would remain constant as Z(j) changes.

There are several other spectral measures of directed communication used in neuroscience,

including phase slope index [33], partial directed coherence [34], and the directed transfer

function [35]. Each of these can not be a linear function of latent brain networks under

reasonable assumptions. We offer the following brief explanations here, with more details

in Supplemental Section E. The phase slope index cannot capture bidirectional transmission

of signal (all signal is considered unidirectional) [36]. Partial directed coherence and the

directed transfer function are both based in VAR models like the Directed Spectrum, but

they rely solely on the transfer matrix properties and do not use the innovations. As such,

they are scale-invariant and are not linear functions of the brain networks.

There are a number of other non-spectral measures of directed communication used in

neuroscience [25, 26]. The cross-correlation function between activity in different neural

populations has been used to identify directed communication between neuronal populations

[37]. In these applications it has been used to identify the lag associated with unidirectional

transmission between populations, and is considered unreliable in situations involving

bidirectional communication [25]. Transfer entropy provides an information theoretic

measure of directed communication. In our application transfer entropy suffers from the

same problem as Granger causality, where scaling the activation of a single network results

in the same value [38, 39]. We discuss methods for measuring directed communication

between neural populations further in Supplemental Section E.

One final method worth mentioning here is dynamic causal modeling (DCM) [40]. DCM

produces a generative model to explain observed neural activity based on latent connectivity.

Directed connectivity is represented by parameters of the model, which contrasts with

our application where measures of directed connectivity are calculated first before being

used as features in an LFM. DCM has even been extended in order to represent spectral

content in neural signals [41]. One substantial difference between DCM and the approach
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we suggest here is that DCM is not designed to segregate the directed connectivity out

into subnetworks in an unsupervised manner. Instead, DCM is typically used to identify

differences in connectivity between two known conditions [42].

5 Directed Spectrum improves identification of latent networks

To test the effectiveness of the Directed Spectrum and LFMs, we generated a dataset

of simulated latent networks. The dataset contains 10,000 independent recordings, each

containing 5 channels sampled for five seconds at 500 Hz. The “observed” recordings were

generated as a sum of contributions from three independent networks. Each network was

associated with a vector autoregressive (VAR) model that generated network contributions

as a different random draw for each recording with parameters that were fixed over all

recordings. Each VAR model was designed to generate a particular pattern of oscillations

and delayed directional transmission of signals. See Figure 1 for the network properties and

Figure 2 for a visualization of the superposition. See Supplemental Section F.2 for additional

details on the design of those VAR models.

We generated a model of the latent networks in the simulated dataset by applying an LFM

to DS measures. We calculated the Directed Spectrum for frequencies between 1 Hz and

50 Hz at 1 Hz intervals, between all directed pairs of channels. A non-negative matrix

factorization model (i.e. LFM) was trained using the Itakura-Saito (IS) divergence loss,

with an L1 penalty on the factor loadings and scores, and multiplicative update steps for

optimization [22]. The IS divergence loss was chosen because it is related to the gamma

distribution and is a more appropriate loss for power than mean squared error loss. After

training, the non-negative matrix factorization (NMF) factors were re-ordered to correspond

to the matching network in the simulation, based on maximizing the average Spearman’s

correlation between the estimated and true network activation scores. For comparison, we

repeated this process with the Pairwise Directed Spectrum (PDS), unconditional spectral

Granger causality (GC) [17], conditional spectral Granger causality (cGC) [32], phase-slope

index (PSI) [33], directed transfer function (DTF) [35], and partial directed coherence

(PDC) [34] features substituted for the DS features. We also use the difference between

(unconditional) Granger causality values in either direction as suggested by Roebroeck et al.

[43] as an additional comparison method. Because both this difference and PSI represent the

direction of shared information with sign (i.e. positive/negative), we set negative values to

zero and leave the opposite direction as positive for both of those comparison methods; this

allowed us to continue to use NMF to identify latent networks.

We evaluated how well each model recovered the underlying network activation scores

using Spearman’s correlation. The model of DS features performed significantly better in

this regard than the “non-linear” features (see Table 1). The PDS model also performed

significantly better than the “non-linear” models, and gave comparable results to the DS

model. We have visualized the estimated scores along with the true scores for each window

for the DS features and unconditional Granger causality features in Figure 3. We see that the

score estimates of the DS model are much more tightly spread around the true score values,

with the relationship between true scores and estimated scores being very weak in the model

of GC features.

Gallagher et al. Page 9

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We also tested how robust these results were to violations of the model assumptions

described in Section 3 and to variations in recording window length. Violations of the model

assumptions did reduce model performance somewhat, but the DS features still performed

better than the comparison methods. Shorter window lengths reduced performance in all

models, but again the DS models performed better at all window lengths. Full details and

results for these claims are in Supplemental Sections G and H.

Finally, we tested whether the models produced accurate and interpretable representations of

the true latent networks from the dataset. The model of DS features successfully recovers

all directional influences of each network in the corresponding factors (see Figures 4, S1).

Spurious detection of network components was limited to connections between true nodes

in the network at the frequency associated with the network, and these spurious influences

were small relative to the true detected influences. While the model of GC features did

also recover all directional influences of the networks underlying the simulated data, it

incorrectly spread the directional influences associated with each network out over multiple

estimated networks. This resulted in the GC model identifying more spurious influences

with greater relative amplitudes.

6 Directed Spectrum improves brain state decoding of neural recordings

We next tested how effectively networks identified by the Directed Spectrum decode

behaviorally relevant variables from neural recordings, as a proxy for determining whether

they reflect “real” networks. The dataset consists of local field potentials simultaneously

recorded from 11 brain regions in 26 mice (originally published in [27]). In each recording

session local field potentials were recorded from a mouse while it was exposed to three

different behavioral contexts of successively increasing stress levels: resting in the home

cage, exploring an open field, and a tail suspension test. The tail suspension test is

commonly used to investigate learned helplessness [45].

In order to train networks that could be used to decode behavioral context, we first divided

the dataset into time windows with a duration of 1 second. For each time window, we

calculated the Directed Spectrum for all directed pairs of brain regions, for frequencies

from 1 to 56 Hz at 1 Hz intervals. A nonnegative matrix factorization model with L1

regularization was trained using the IS divergence objective [46] in order to identify latent

brain networks from the DS measures. A multinomial logistic regression classifier with

L1 regularization was then applied to the latent factor scores for decoding the behavioral

context. In order to obtain estimates of the spread of the decoding performance and choose

optimal hyperparameter values, a 5-fold nested cross-validation procedure was used, where

each mouse was associated with only one split. The average one-vs-all area under the

reciever operating characteristic curve (AUC) across all three behavioral contexts was

used as the evaluation metric. The hyperparameters tuned during cross-validation were the

number of NMF factors (20, 40, 80), NMF regularization strength (1000, 100, 10, 0), and

logistic regression regularization strength (10, 1). Similar to the experiment described in

Section 5, the procedure was repeated using the Pairwise Directed Spectrum (PDS) and

the comparison measures listed in that section. The one comparison method that was not

used here is conditional Granger causality; in our tests, obtaining stable conditional spectral
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Granger causality estimates on our rodent LFP data via the methods outlined by Barnett and

Seth [24] requires too much computation time to be practical for this application.

Our training procedure resulted in a one-vs-all AUC for each of the behavioral contexts, for

each of the 5 splits, for each of the measure types (see Table 2). We performed a 2-factor

repeated measures ANOVA and determined that there was a significant difference associated

with the measure types (F = 92.9, p < .001). A Tukey’s HSD post-hoc test revealed that

there was not a significant difference between models of the pairwise and non-pairwise

versions of DS (p = .90), but that both performed significantly better than models of the

other measures (p ≤ .001 for all).

7 Discussion

We have shown that our novel measure of directed communication, the Directed Spectrum

(DS), is a linear function of latent brain networks under reasonable assumptions, and

so is compatible with LFMs for characterizing latent brain networks. We saw drastically

improved recovery of networks in simulated data with a known ground truth. In real neural

recordings, the Directed Spectrum improved decoding of neurally relevant environmental

variables. These results demonstrate that the Directed Spectrum allows for more accurate

and interpretable models of latent networks defined by directed communication.

A limitation that could be explored in future work is that the Directed Spectrum assumes

that the network states are stationary over a single time window (see Supplemental Section

B). This limitation is common to almost all methods that assess spectral content of neural

activity. Because of this, the Directed Spectrum is only theoretically grounded when applied

to time windows that are shorter than the time expected for substantial change to be occur

in the latent brain state. In practice, time window lengths of one to five seconds have been

considered a relatively stable period in studies of emotional processing [47, 48].

We have only explored LFMs here, but a variety of nonlinear latent factor models exist

for modeling latent brain networks [5, 49]. Nonlinear models are especially useful in

applications where predictive performance is the only priority, such as brain-computer

interfaces. When the primary goal is to drive scientific understanding of the brain, nonlinear

models are less desirable because it is challenging to relate the parameters of such models

to relevant conclusions about brain function [8]. We believe that LFMs and the Directed

Spectrum are an appropriate, efficient, and reproducible baseline approach in both scientific

and prediction-based applications, while noting that other more expressive models may lead

to even better predictive performance at the cost of interpretability.

The development of the Directed Spectrum provides a straightforward way to generate linear

models of latent brain networks defined by directed communication. We view this as an

important advancement because directed communication between neural populations is a

critical component of the way neuroscientists understand brain networks. Furthermore, the

Directed Spectrum is likely useful for studying latent networks in many other fields as well

(e.g. latent networks of directed internet traffic). We view the major strength of the Directed

Spectrum is that it enhances the expressiveness of LFMs by allowing them to accurately
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model directed communication within networks. Thus, we have expanded the capabilities

of LFMs while retaining the level of interpretability that make them attractive models in

practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1:
Graphical representation of the simulated latent networks. The five channels are represented

by the letters A, B, C, D, and E. A box around a channel indicates the corresponding

network induces oscillations in that channel. Arrows indicate propagation of signal at some

delay. Networks 1 and 3 have a predominant frequency of 5 Hz (both in purple), and

Network 2 has a predominant frequency of 30 Hz (in blue).
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Figure 2:
Simulated recordings are a sum of latent network contributions. The “observed” recording

(left) is a sum of signals generated by each of the three networks. Each panel contains 5

signals associated with the 5 regions over the same one second period. Black scale bars

indicate the period for oscillations associated with each network, and are placed to show that

the distance between peaks in the signal is approximately one period.
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Figure 3:
True vs. estimated network scores. The estimated scores for the model trained using DS

features are plotted in blue, the estimated scores for a model trained on unconditional

Granger causality features are plotted in red. The line in black demonstrates the expected

trend for a model that perfectly recovers the latent network scores.
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Figure 4:
Estimated directional influences in Network 2 for a model of DS features (blue) and

unconditional Granger causality features (red). Within each grid, a plot corresponds to signal

that is being transmitted from the channel listed on the left to the channel listed above.
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Table 1:

Spearman’s correlation between latent network activation estimates and true activation scores. GC:

unconditional Granger causality; cGC: conditional Granger Causality; GCdiff: difference between Granger

causality directions; PSI: phase slope index; DTF: directed transfer function; PDC: partial directed coherence;

DS: Directed Spectrum; PDS: Pairwise Directed Spectrum. Values in [brackets] represent the 95% confidence

interval [44].

Measure Network 1 Network 2 Network 3

GC 0.485 [0.468, 0.502] 0.442 [0.424, 0.459] 0.281 [0.261, 0.300]

cGC 0.475 [0.458, 0.491] 0.293 [0.274, 0.312] 0.127 [0.108, 0.147]

GCdiff 0.554 [0.539, 0.569] 0.501 [0.484, 0.517] 0.444 [0.427, 0.462]

PSI 0.387 [0.368, 0.405] 0.135 [0.115, 0.155] 0.248 [0.229, 0.268]

DTF 0.426 [0.408, 0.443] 0.131 [0.111, 0.151] 0.542 [0.526, 0.557]

PDC 0.560 [0.545, 0.575] 0.154 [0.134, 0.174] 0.445 [0.427, 0.462]

DS 0.920 [0.916, 0.923] 0.905 [0.901, 0.909] 0.927 [0.924, 0.930]

PDS 0.908 [0.904, 0.912] 0.917 [0.913, 0.920] 0.916 [0.913, 0.920]
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Table 2:

Behavioral Context Decoding Performance. The columns ‘HC AUC’, ‘OF AUC’, and ‘TS AUC’ report

the mean and standard error of the one-vs-all AUC across 5 splits for the homecage, open field, and tail

suspension behavioral contexts, respectively. The ‘Mean AUC’ column reports the average across the mean

AUCs reported for each behavioral context.

Measure Mean AUC HC AUC OF AUC TS AUC

GC 0.828 0.825 ± 0.019 0.824 ± 0.022 0.835 ± 0.010

GCdiff 0.795 0.795 ± 0.013 0.798 ± 0.023 0.791 ± 0.007

PSI 0.674 0.676 ± 0.014 0.684 ± 0.015 0.661 ± 0.016

DTF 0.755 0.774 ± 0.017 0.774 ± 0.015 0.717 ± 0.022

PDC 0.717 0.733 ± 0.021 0.778 ± 0.014 0.639 ± 0.008

DS 0.908 0.894 ± 0.016 0.916 ± 0.012 0.915 ± 0.007

PDS 0.919 0.909 ± 0.014 0.915 ± 0.014 0.932 ± 0.005

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2022 May 20.


	Abstract
	Introduction
	Linear factor models (LFMs) for identifying brain networks
	Compatibility between linear factor models and measures of neural activity

	Modeling directed communication in brain networks with LFMs
	Modeling brain networks as independent VAR processes
	Modeling observed signal as a superposition of latent transmitted signals
	The Directed Spectrum

	Related measures of directed communication
	Directed Spectrum improves identification of latent networks
	Directed Spectrum improves brain state decoding of neural recordings
	Discussion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Table 1:
	Table 2:

