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With ever-increasing advancements in technology, neuroscientists are able to collect data in greater volumes and with finer resolution.
The bottleneck in understanding how the brain works is consequently shifting away from the amount and type of data we can collect and
toward what we actually do with the data. There has been a growing interest in leveraging this vast volume of data across levels of analysis,
measurement techniques, and experimental paradigms to gain more insight into brain function. Such efforts are visible at an interna-
tional scale, with the emergence of big data neuroscience initiatives, such as the BRAIN initiative (Bargmann et al., 2014), the Human
Brain Project, the Human Connectome Project, and the National Institute of Mental Health’s Research Domain Criteria initiative. With
these large-scale projects, much thought has been given to data-sharing across groups (Poldrack and Gorgolewski, 2014; Sejnowski et al.,
2014); however, even with such data-sharing initiatives, funding mechanisms, and infrastructure, there still exists the challenge of how to
cohesively integrate all the data. At multiple stages and levels of neuroscience investigation, machine learning holds great promise as an
addition to the arsenal of analysis tools for discovering how the brain works.
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Introduction
What is machine learning?
The term machine learning was coined by Arthur Samuel in 1959
to describe the subfield of computer science that involves the
“programming of a digital computer to behave in a way which, if
done by human beings or animals, would be described as involv-
ing the process of learning” (Samuel, 1959). In other words, the
field investigates how computers can improve predictions, ac-
tions, decisions, or perceptions based on data and ongoing
experience. The field of machine learning was driven by the de-
velopment of algorithms for pattern recognition (e.g., an algo-
rithm for filtering out unwanted marketing emails) and, in

general, investigates the development of algorithms that can learn
from and make predictions on data. These algorithms largely fall
into a few dominant categories: supervised machine learning,
unsupervised machine learning, and reinforcement learning.

In supervised machine learning, input data, or training data,
have known labels, commonly supplied by human experts. The
goal is to learn the relationship between the data and the labels
such that the computer can predict the label of a previously un-
seen data item with accuracy comparable with the human expert.
For instance, a training dataset could consist of a set of e-mails
that are already classified as spam or not spam, and the goal of the
computer algorithm is to settle on a model that can accurately
label new incoming e-mail as “spam” or “not spam.” As another
example, in an fMRI study, Schuck et al. (2015) use a supervised
machine learning classifier to classify the color of the stimuli seen
by the subjects based on local fMRI brain activity. Examining the
classifier accuracy over time and in different brain regions al-
lowed them to infer where and when color was represented in
the brain. Regression models, which learn relationships among
variables, would fall into the category of supervised machine
learning.

Reinforcement learning is a branch of supervised machine
learning that has inspired and has been inspired by behaviorist
psychology. The “classes” to be learned are actions that could be
taken in response to a data item. Machines are trained to make
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decisions through a dynamic trial-and-error process to maximize
a desired outcome. The human expert no longer labels each item
with the desired class (action) but instead creates a “scoring func-
tion” that tells the algorithm how good its move was. For exam-
ple, a machine might have the goal of winning checkers games,
and learn to select moves based on past interactions to maximize
the chance of winning the checkers match (Sutton and Barto,
1998). In a typical situation, a scoring function only provides a
reward or information based upon the outcome of a complete
task after several actions (i.e., in the checkers match, only after a
win/loss is achieved; in a Brain Computer Interface task, only
when the objective is successfully obtained).

In unsupervised machine learning, on the other hand, the
training data have no labels. The goal is to discover hidden struc-
ture in the data, perhaps by taking advantage of similarity or
redundancy. A well-known example is principal component
analysis, a statistical dimension reduction technique that exploits
redundancy in the data using only second-order statistics. For
unsupervised machine learning, input data might be composed
of the symptom profiles of patients thought to have the same
general neuropsychiatric illness but also to comprise meaningful
heterogeneity. In this case, the goal of the model would be to
group similar patients together, thus uncovering important
structure within this diagnosis. This would be an example of a
family of algorithms aimed at clustering. Critically, a major chal-
lenge with unsupervised machine learning algorithms for cluster-
ing or dimensionality reduction is understanding the features
that make up the groups or reduced dimensions and transform-
ing them into testable scientific hypotheses. For example, Drys-
dale et al. (2017) used machine learning to discover subtypes of
depression based on fMRI functional connectivity, and then sub-
sequently validated their findings via testing the follow-up hy-
pothesis that a treatment modulating cortical connectivity would
yield different outcomes among these subgroups.

These categories of machine learning differ in their inputs,
outputs, and objectives, and thus encompass a powerful set of
tools (e.g., classification, regression, clustering) that enable us to
refine the ways we make predictions, make decisions, or discover
structure from large sets of data. While machine learning has long
been applied to the field of computational and theoretical neuro-
science, its burgeoning role in broader cellular, systems, and cog-
nitive neuroscience has been more recent, especially as statistical
machine learning packages are being made available in standard
analysis software. Accordingly, questions arise as to its place in
empirical research ([No authors listed], 2014). Data-driven ma-
chine learning approaches are often directly contrasted to the
more traditional hypothesis-driven approach, in which an exper-
iment is undertaken to mathematically evaluate the plausibility of
a concrete, falsifiable proposed explanation or model, given the
observed data. These two approaches are often pitted against each
other ([No authors listed], 2014). The question should not be
whether one approach is better than the other, but rather how
and when we can take advantage of these two complementary
strategies.

Machine learning within the hypothesis-driven framework
Despite the distinction between data-driven and hypothesis-
driven approaches, there are already many applications of ma-
chine learning within the hypothesis-driven framework. Many of
these serve as ways to save time and effort, mitigate human biases,
or make large datasets computationally tractable. For example, in
MRI, image-processing algorithms allow for automated align-
ment of MRI scans from individual people to atlases (Jenkinson

and Smith, 2001; Jenkinson et al., 2002; Andersson et al., 2007).
This registration of individual scans to a unified atlas makes
group-level spatial analyses and inferences possible. Other algo-
rithms accomplish automated image segmentation, and allow for
applications, such as parcellation of structural MRI scans into
labeled regions (Fischl et al., 2004), identification of white matter
tracts from diffusion MRI (O’Donnell et al., 2017), or identifica-
tion of neuron structural boundaries in microscopic (EM) im-
ages (Jain et al., 2010). Image-processing algorithms can further
be applied to video recordings to automate the measurement,
identification, and categorization of animal behaviors (Anderson
and Perona, 2014; Hong et al., 2015). Such tasks are otherwise
accomplished manually, and the development of these technolo-
gies immensely reduces the required human time and effort, in
turn enabling higher-throughput analysis pipelines. Beyond the
added efficiency, with automated processes there is far less room
for human subjectivity, biases, or error in coding of images or
behaviors. Applied correctly, this can make results more objec-
tive, consistent, and reproducible.

In addition to these algorithms that aid in data processing, an-
other example of an application of machine learning techniques
within the hypothesis-driven framework is as a strategy for hypoth-
esis testing. For example, in a study on hippocampal-prefrontal in-
put and spatial working memory encoding, Spellman et al. (2015)
optogenetically inhibited the ventral hippocampus (vHPC) projec-
tion to the medial prefrontal cortex (mPFC) during a spatial working
memory task. From behavioral results, they drew the conclusion that
input from vHPC to mPFC is critical for spatial cue encoding. To
further test this hypothesis, they trained a classifier on the mPFC
population firing rate to decode the spatial location of the animal’s
goal, and separately to decode the task phase. This classifier approach
allowed them to quantify the reliability and strength of these mPFC
neural representations. They were then able to statistically show that
inhibition of the vHPC-to-mPFC signaling resulted in decreased
classifier accuracy for spatial goal location but not for task phase. In
other words, the ability to classify an outcome from the mPFC activ-
ity became a measure of how well that outcome was encoded in
mPFC. This machine learning approach thus allowed them to test
their hypothesis that these projections were specifically supporting
working memory encoding of space, and not other task-relevant
features. As another example, Paul et al. (2017) used supervised clus-
tering to analyze single-cell transcriptomes of a set of previously
anatomically and physiologically characterized cortical GABAergic
neurons, and discovered that these categories indeed differ by a tran-
scriptional architecture that encodes their synaptic communication
patterns, confirming the subcategorization of these neurons. Thus,
there are already many applications of machine learning that serve to
bolster hypothesis-driven research, by automating aspects of data
processing, or by yielding additional strategies for hypothesis testing.

Machine learning beyond the hypothesis-driven framework
Machine learning has applications well beyond the hypothesis-
driven framework. The more exploratory data-driven approach
allows us to explore data in a way that is less limited by our
hypothesis space. After all, experiments are only as useful as the
hypotheses that they are designed to test, and full hypothesis
testing on a drastically expanding dimensionality is intractable.
To this end, machine learning methods allow us to extract from
our data the dimensions that explain the most variance or even to
learn a data-driven taxonomy. For example, data-driven video
analysis of behavior may not only serve as an automated replace-
ment for human behavioral coding, but if an unsupervised ap-
proach is used, may even generate new behavioral classifications,
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unlimited by human a priori behavioral classification or labels
(Anderson and Perona, 2014). In fMRI, data-driven algorithms
have been used to parcellate the brain based on fMRI functional
connectivity data, yielding a functionally relevant fMRI atlas free
of the constraints of a priori brain parcellations and labels (Cra-
ddock et al., 2012). In another fMRI study, Chang et al., (2015)
used machine learning to identify a sensitive and specific neural
signature of affective responses to aversive images that was unre-
sponsive to physical pain, thus allowing them to infer neural
components differentiating negative emotion from pain, “pro-
viding a basis for new, brain-based taxonomies of affective pro-
cesses.” Along these lines, independent component analysis and
classification algorithms have been used to infer neural networks,
decode brain states, or separate noise from signal (Jung et al.,
2001; Thomaset al., 2002; Zuo et al., 2010; Lemm et al., 2011;
Calhoun et al., 2014; Whitmore and Lin, 2016). Such strategies
for capitalizing on the high dimensionality and multivariate na-
ture of data are certainly not unique to neuroscience; the entire
field of bioinformatics has emerged from this idea and is deeply
rooted in machine learning (Larrañaga et al., 2006; Libbrecht and
Noble, 2015).

By revealing structure in the data, such machine learning ap-
proaches may yield new, testable hypotheses. In a study examin-
ing the neural mechanisms underlying stress-induced behavioral
adaptation, D. Carlson et al. (2017) recorded cellular activity and
local field potentials from multiple brain regions. Using a super-
vised machine-learning approach, they found that cellular activ-
ity in two of the recorded brain regions (infralimbic cortex and
medial dorsal thalamus) showed adaptation across repeated ex-
posure to stress. This led to a series of follow-up experiments to
investigate whether and how these two regions were connected.
The two regions were found to be functionally connected via
cross-frequency phase coupling, which was further confirmed via
an optogenetic manipulation experiment. In this case, machine
learning revealed potential predictors, generated a relevant hy-
pothesis space, and led to the design of a (successful) confirma-
tory experiment.

While certainly powerful as a brute force approach to hypoth-
esis generation, data-driven machine learning approaches may
also yield more direct insight into brain function. After all, the
problems solved by the brain have strong parallels to the prob-
lems solved by machine learning. For example, we as humans
must be able to make sense of all the multisensory information
coming into the brain to make relevant inferences, such as
whether a person we are talking to may be angry (Wegrzyn et al.,
2015). Similarly, machine learning algorithms must learn struc-
ture from large multidimensional data; moreover, it can be
shown that allowing data from multiple modalities to fully inter-
act and inform each other leads to more powerful biomarkers

(Levin-Schwartz et al., 2017). Such paral-
lels have made for incredibly powerful
cross-pollination between machine learning
and neuroscience. For example, reinforce-
ment learning first emerged in computer
science in the 1950s (Bellman, 1957, 2010;
Sutton and Barto, 1998). Quantitative mod-
els of reinforcement learning emerged to de-
scribe error-based learning (Bush and
Mosteller, 1951; Rescorla and Wagner,
1972; Mackintosh, 1975; Pearce and Hall,
1980). Then in a seminal paper, Schultz et al.
(1997) showed neuronal evidence for re-
ward prediction error, a key element of re-

inforcement learning, in the brain, invigorating a whole branch of
neuroscience (Niv, 2009; Gershman and Daw, 2017). Another ex-
ample is that of deep learning, a family of machine learning algo-
rithms aimed at learning data representations; early artificial neural
networks were inspired by neurobiology (McCulloch and Pitts,
1990). The deep learning field continued to advance, and develop-
ments made on the computational front have now inspired hypoth-
eses on the neuroscience front (Marblestone et al., 2016). Thus,
because of the similarity of the problems being solved by machine
learning algorithms and the brain, statistical and computational de-
velopments can inform neuroscience and yield new theories of brain
function.

Validation of machine learning results
A common criticism of data-driven approaches is that they can be
void of mechanism and thus can limit inferences and interpreta-
tion (T. Carlson et al., 2017). To return to the study on neural
adaptation to repeated stress exposure (D. Carlson et al., 2017),
the discovery that the cell firing in the infralambic cortex and
medial dorsal thalamus was related to the behavior provided little
insight into the mechanism per se. What were the cells doing?
How were the regions connected? In which direction does the
information flow? Does the behavior drive the activity or vice
versa? Only through our follow-up experiments was it deter-
mined that the two regions were functionally connected through
cross-frequency phase coupling. Further optogenetic manipula-
tion experiments revealed that the changes observed in this cir-
cuitry were part of a compensatory mechanism in response to
repeated stress exposure.

As illustrated, one way to overcome the limitations of each of
these approaches is to design experiments that leverage the ad-
vantages of both approaches (Fig. 1). A scientific study could be
divided into two phases. The first phase would be aimed at explo-
ration, discovery, and ultimately hypothesis generation. For in-
stance, in an animal study, initial experiments would focus on
collecting large, broad datasets, such as cellular activity, local field
potentials, motion, behavior, etc., from a mouse as it undergoes a
contextual manipulation. Machine learning approaches could
identify relationships among the dimensions in ways that relate
to the mouse’s physiology, behavior, and context, yielding spe-
cific hypotheses regarding these relationships. The second phase
of the experiment would then be designed to test these concrete
hypotheses, using a variety of techniques for biological manipu-
lation. Viral strategies enable us to generate mice with specific
and conditional genetic mutations. Technologies, such as opto-
genetics and designer receptors exclusively activated by designer
drugs (DREADDs), allow us to manipulate the activity of specific
cell types, and in the case of optogenetics, with precise timing and
frequency (Boyden et al., 2005; Armbruster et al., 2007). Such

Previous 
Research

Data-Driven 
Machine learning

Hypothesis 
Genera�on

Perform 
Experiments

Analyze Results
Draw Conclusion

Figure 1. Model for data-driven science supporting hypothesis-driven science. Within the framework of hypothesis-driven
science, machine learning can be used to generate hypotheses to be subsequently tested.
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technologies allow us to test more refined hypotheses and dis-
cover more specific mechanisms underlying brain function, as a
recent multisite in vivo recording study showed by linking large-
scale neural dynamics to stress-related behavioral dysfunction
(Hultman et al., 2016). In human subjects, a similar chain of
events could be performed. From machine learning on a high-
dimensional fMRI or EEG dataset, one could generate hypotheses
about functional encoding of behavior, then manipulate the pu-
tative encoding through focused brain stimulation. Invasive and
noninvasive stimulation techniques are far from the precision of
optogenetics, but there is emerging evidence that they can be used
to change specific features of brain activity (Smart et al., 2015;
Philip et al., 2017; Widge et al., 2017).

Regardless of whether we use these machine learning ap-
proaches to generate hypotheses or to learn something about the
computations being performed in the brain, our success will de-
pend heavily on the model space we choose. A common aphorism
in statistics states, “All models are wrong, but some are useful”
(Box, 1979). In other words, no model we come up with can fully
describe what is happening in a given system; however, a model
can nonetheless be useful, capturing some amount of truth or
making reliable predictions. So how do we know which models
are useful? Validation is key. For example, although Drysdale et
al. (2017) were able to determine patterns of neural activity that
clustered with behavioral symptoms and treatment responses in a
cohort of depressed subjects, the scientific and potential clinical
value of their finding would have been dramatically diminished if
their model failed to predict which treatments to which a new
patient with depression would respond. Simply put, we can find
regularities in nearly any dataset, but the real test is whether those
regularities or predictions hold up using additional (nonoverlap-
ping) datasets handled in the same manner (Woo et al., 2017).
Generally, this level of validation is performed within research

groups, where model predictions generated on a subset of data
acquired during an experiment are validated on another subset of
data that was held out during the model generation stage. For
example, cellular firing data acquired for animals during a se-
lected subset of experimental days may be used to develop the
machine learning models, whereas data from other days may be
used for model validation (Fig. 2, top). The limitation of this
strategy is that, while the model solution may apply to the specific
group of animals used for experimental testing, it may not extrap-
olate to new animals. Thus, it is more optimal for the model
validation to be performed out of subject. In this scenario, the
model would be developed using all of the trials from a specific set
of experimental animals, then validated using another set of ex-
perimental animals (Fig. 2, bottom). The next level of validation
is determining whether similar findings will hold up across re-
search groups. Indeed, Drysdale et al. (2017) replicated their ini-
tial findings from their unsupervised clustering analysis in a
completely separate dataset, thus adding confidence that these
findings are robust. This level of validation has always been the
gold standard for both data- and hypothesis-driven scientific
discovery.

Explainable artificial intelligence: a vision for
machine learning
With proper validation, machine learning has great promise both
within and beyond the hypothesis-driven experimental frame-
work. Nonetheless, machine learning further holds the potential
to generate unifying models of brain function and behavior.
Maximizing this potential of machine learning in neuroscience
will require a different type of validation approach that empha-
sizes interpretability and generalizability. In other words, do the
machine learning-discovered models capture fundamental prin-
ciples of brain function and reflect causative phenomenon that

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Trial 11 Trial 12
Animal 1
Animal 2
Animal 3
Animal 4
Animal 5
Animal 6
Animal 7
Animal 8
Animal 9
Animal 10
Animal 11
Animal 12

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Trial 11 Trial 12
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Animal 8
Animal 9
Animal 10
Animal 11
Animal 12

Figure 2. Hold-out trial versus out-of-sample model validation. Validation commonly accomplished within animal. For example, a model might be trained on subsets of each animal’s data (top,
green) and tested on the remainder of data from the same animal (top, yellow). Here, we propose training on a subset of the animals (bottom, green), and testing on an independent set of animals
(bottom, yellow).
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extrapolate across multiple biologically relevant contexts? Ex-
plainable artificial intelligence (XAI) emphasizes the develop-
ment of more interpretable, explainable models and should be
the ultimate goal of big data-neuroscience (Fig. 3). To achieve
XAI, machine learning models must accomplish a broad set of
comprehensive goals. First, models must be based on measure-
ments of brain biology, such as cell firing, local field potential
oscillations, protein levels, BOLD MRI signal, and scalp EEG.
Second, models must explain how measured features are orga-
nized relative to each other (explainable generative models,
which provide a probabilistic description of how the complex
observed data can be synthesized from simpler, explainable prop-
erties). Explainability, or interpretability, is crucial; although a
very complex model might yield more accurate predictions than
a simpler model, a high priority for XAI is understanding how the
model works and how the variables interact. Third, models must
predict specific outcomes, such as behavioral or physiological
changes in response to perturbations on the system (predictive
models and discriminative, or conditional, models). Fourth, models
must extrapolate across multiple subjects (generalizable models).
Fifth, models must extrapolate across multiple biological contexts
(convergent models). An example of an explainable model is the
Krebs cycle, which describes how multiple enzymes and sub-
strates are organized together to generate energy. Additionally,
this model of energy production extrapolates across individuals,
and across many biological models of health and disease.

XAI fits well with the National Institute of Mental Health’s
Research Domain Criteria framework, which strives to integrate
many levels of explanation to better understand basic dimensions
of human brain function underlying behavior. An XAI model
may, for example, explain how gene expression, cell firing, and/or
oscillations across multiple brain regions are organized within a
biological network. The dependencies inferred among these neu-
ral network components should show predictable changes, given
an experimental perturbation of gene expression, or cellular ex-
citability, or oscillatory synchrony. The model would also explain
how this network relates to a behavior, such as sociability, and it

would extrapolate across multiple individuals. Finally, this
model would explain why normal social behavior is disrupted in
seemingly distinct clinical phenomena, such as depression and
autism. Thus, XAI could comprehensively explain phenomena at
multiple levels and their relationships with each other, and dem-
onstrate that this explanation withstands hypothesis-based per-
turbations and validation.

Developing these explainable models will require big datasets.
One potential strategy for acquiring these datasets could involve
longitudinal observations in a relatively small number of subjects
(i.e., in the hundreds range). This approach would ultimately
facilitate many repeated observations of the brain during behavior.
The explainable models would then be built using within-subject
variance, isolating the relationship between brain function and be-
havior relative to a drifting biological baseline. The advantage of this
approach is that it can initially be implemented by a smaller number
of research groups. Another potential strategy could be to collect
time-limited data across a much larger number of subjects. (i.e., in
the tens of thousands to millions range). The explainable models
would then be built using across-subject variance. This latter ap-
proach would likely require that many research groups collaborate
in the data collection phase. A critical first step would be to align
collection methods, standards, and paradigms across a broad re-
search community, as many within the neuroimaging community
are already doing (Poldrack et al., 2013; Gorgolewski et al., 2016).

Because developing these explainable models will ultimately
also require observations and hypothesis testing in both human
and animal studies, directed efforts to build transdisciplinary
teams made up of neuroscience researchers, clinicians, and data
scientists with varying levels of analytical expertise are warranted.
These directed efforts may include developing novel funding
mechanisms, or revising current peer review processes to priori-
tize grant applications that include both human and animal stud-
ies. Nevertheless, it will not simply be sufficient to build teams
that include expertise in genetics, cellular/molecular neurosci-
ence, systems neuroscience, cognitive neuroscience, treatment
paradigms including pharmacology and neuromodulation, be-
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Figure 3. XAI. Here we present a vision for leveraging machine learning toward developing unified models. The criteria for models achieving XAI are that they must be based on measurable brain
biology and be descriptive, predictive, generalizable, and convergent.
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havior quantification in health and disease, statistics, and ma-
chine learning. Rather, a unique new group of scientists capable
of bridging the broad gaps between these disciplines will be
needed to yield the promise of XAI. These scientific “integrators”
will need expertise in multiple disciplines, enabling them to suc-
cessfully translate across the intellectual and cultural boundaries
that exist between fields. These boundaries may exist at the level
of logic constructs (e.g., the difference between frequentist and
Bayesian statistics), or at the level of simple language. For exam-
ple, the word “model” has a different connotation for each of the
fields described above.

So where do we find these scientific integrators? Simply put,
we must train them. The medical scientist training program, in
which students are trained as both basic scientists and clinicians,
is a long-standing example of an approach for developing scien-
tific integrators. Along these lines, our nation’s neuroscience
leadership has highlighted the important role that psychiatrists
cross-trained in engineering/mathematics will play in advancing
neuroscience, and grant mechanisms that foster postdoctoral
cross-training in neuroscience and data science have recently
been promoted through the national BRAIN Initiative (National
Institutes of Mental Health, 2017). Finally, we must continue to
adapt our neuroscience ecosystem to promote studies that ad-
vance XAI. For example, federal agencies can optimize grant re-
view processes both by promoting the broad participation of data
scientists and scientific integrators in peer review panels, and by
educating peer reviewers on the strengths of data-driven science.
There is without doubt still room and a necessary scientific role
for traditional hypothesis-driven experiments; but if we are to
expand neuroscience to incorporate big data and XAI, then we
must allow for and encourage interdisciplinary integrative peer
review as well.

Machine learning thus holds great promise in advancing the
field of neuroscience, not as a replacement for hypothesis-driven
research, but in conjunction with it. Machine learning tools can
bolster large-scale hypothesis generation, and they have the po-
tential to reveal interactions, structure, and mechanisms of brain
and behavior. Importantly, given the dangers of spurious find-
ings or explanations void of mechanism, care must be taken to
ensure the utility of such an approach. It is with proper replica-
tion, validation, and hypothesis-driven confirmation that ma-
chine learning analysis approaches will fulfill the great promise
they hold, allowing us to make greater strides toward under-
standing how the brain works.
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